Elasticsearch 8.X 如何生成 TB 级的测试数据 ?

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch 8.X 如何生成 TB 级的测试数据 ?

1、实战问题

2、问题解析

其实类似的问题之前在社群也经常被问到。实战业务场景中在没有大规模数据之前,可能会构造生成一些模拟数据,以实现性能测试等用途。

真实业务场景一般不愁数据的,包含但不限于:

  • 生成数据
  • 业务系统产生数据
  • 互联网、设备等采集生成的数据
  • 其他产生数据的场景.....

回归问题,Elasticsearch 8.X 如何构造呢?

社群达人死敌wen大佬给出的方案:两个 sample data的index来回reindex,一次操作数据量翻倍。

实际,死敌 wen 大佬指的是如下三部分的样例数据。

那么有没有其他的解决方案呢?本文给出两种方案。

3、方案一、elasticsearch-faker 构造数据

3.0 elasticsearch-faker 工具介绍

elasticsearch-faker 是一个用于为 Elasticsearch 生成虚假数据的命令行工具。

它通过模板来定义将要生成的数据结构,并在模板中使用占位符来表示动态内容,比如随机用户名、数字、日期等。

这些占位符将由 Faker 库提供的随机生成数据填充。执行时,该工具会根据指定的模板生成文档,并将它们上传到 Elasticsearch 索引中,用于测试和开发,以检验 Elasticsearch 查询和聚合的功能。

3.1 第一步:安装工具集

https://github.com/thombashi/elasticsearch-faker#installation

pip install elasticsearch-faker

3.2 第二步:制作启动脚本 es_gen.sh

#!/bin/bash
 
# 设置环境变量
export ES_BASIC_AUTH_USER='elastic'
export ES_BASIC_AUTH_PASSWORD='psdXXXXX'
export ES_SSL_ASSERT_FINGERPRINT='XXddb83f3bc4f9bb763583d2b3XXX0401507fdfb2103e1d5d490b9e31a7f03XX'
 
# 调用 elasticsearch-faker 命令生成数据
elasticsearch-faker --verify-certs generate --doc-template doc_template.jinja2 https://172.121.10.114:9200 -n 1000

同时,编辑模版文件 doc_template.jinja2。

模版如下所示:

{
  "name": "{{ user_name }}",
  "userId": {{ random_number }},
  "createdAt": "{{ date_time }}",
  "body": "{{ text }}",
  "ext": "{{ word }}",
  "blobId": "{{ uuid4 }}"
}

3.3 第三步:执行脚本 es_gen.sh

[root@VM-0-14-centos elasticsearch-faker]# ./es_gen.sh 
document generator #0: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 1000/1000 [00:00<00:00, 1194.47docs/s]
[INFO] generate 1000 docs to test_index
 
[Results]
target index: test_index
completed in 10.6 secs
current store.size: 0.8 MB
current docs.count: 1,000
generated store.size: 0.8 MB
average size[byte]/doc: 831
generated docs.count: 1,000
generated docs/secs: 94.5
bulk size: 200

3.4 第4步:查看导入数据结果, kibana 查看。

"hits": [
      {
        "_index": "test_index",
        "_id": "2ff2971b-bc51-44e6-bbf7-9881050d5b78-0",
        "_score": 1,
        "_source": {
          "name": "smithlauren",
          "userId": 207,
          "createdAt": "1982-06-14T03:47:00.000+0000",
          "body": "Risk cup tax. Against growth possible something international our themselves. Pm owner card sell responsibility oil.",
          "ext": "mean",
          "blobId": "c4f5c8dc-3d97-44ee-93da-2d93be676b8b"
        }
      },
      {

4、使用 Logstash  generator 插件生成随机样例数据

4.1 准备环境

确保你的环境中已经安装了 Elasticsearch 8.X 和 Logstash 8.X。Elasticsearch 应该配置正确,并且运行在 HTTPS 上。

另外,确保 Elasticsearch 的相关证书已经正确配置在 Logstash 中。

4.2 生成样例数据

我们将使用 Logstash 的 generator 输入插件来创建数据,并使用 ruby 过滤器插件来生成 UUID 和随机字符串。

4.3 Logstash 配置

创建一个名为 logstash-random-data.conf 的配置文件,并填入以下内容:

input {
  generator {
    lines => [
      '{"regist_id": "UUID", "company_name": "RANDOM_COMPANY", "regist_id_new": "RANDOM_NEW"}'
    ]
    count => 10
    codec => "json"
  }
}
 
filter {
  ruby {
    code => '
      require "securerandom"
      event.set("regist_id", SecureRandom.uuid)
      event.set("company_name", "COMPANY_" + SecureRandom.hex(10))
      event.set("regist_id_new", SecureRandom.hex(10))
    '
  }
}
 
output {
 elasticsearch {
    hosts => ["https://172.121.110.114:9200"]
    index => "my_log_index"
    user => "elastic"
    password => "XXXX"
    ccacert => "/www/elasticsearch_0810/elasticsearch-8.10.2/config/certs/http_ca.crt"
  }
  stdout { codec => rubydebug }
}

4.4 分析配置文件

  • 1.Input
  • a.generator 插件用于生成事件流。
  • b.lines 包含一个 JSON 字符串模板,它定义了每个事件的结构。
  • c.count 指定了要生成的文档数量。
  • d.codec 设置为 json 以告诉 Logstash 期望的输入格式。
  • 2.Filter
  • a.ruby 过滤器用于执行 Ruby 代码。
  • b.代码片段内生成了一个 UUID 作为 regist_id。
  • c.company_name 和 regist_id_new 使用随机十六进制字符串填充。
  • 3.Output
  • a.指定 Elasticsearch 的主机、索引、用户认证信息及证书。
  • b.stdout 输出用于调试,它会输出 Logstash 处理后的事件。

4.5 运行 Logstash

将配置文件保存后,在终端运行以下命令以启动 Logstash 并生成数据:

$ bin/logstash -f logstash-random-data.conf

执行结果如下:

kibana 查看数据结果如下:

借助 Logstash,我们可以轻松生成大量的随机样例数据,用于 Elasticsearch 的测试和开发。这种方法不仅高效,而且可以灵活地根据需求生成各种格式的数据。

5、小结

上述的验证都是使用 Elasticsearch 8.10.2 版本验证通过的。

其实除了文章给出的两种方案外,还有很多其他的方案,比如:esrally 生成测试数据、借助 Python 的 Faker 实现样例数据构造,Common Crawl、Kaggle 等网站提供大型的公共数据集,可以作为测试数据的来源。

大家有没有遇到类似问题,是如何实现的?欢迎留言交流。

推荐阅读


更短时间更快习得更多干货!

中国50%+Elastic认证专家出自于此!

比同事抢先一步学习进阶干货!


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 测试技术 数据库
数据驱动测试和关键词驱动测试的区别
数据驱动测试 数据驱动测试或 DDT 也被称为参数化测试。
|
2月前
|
SQL 分布式计算 NoSQL
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
44 4
|
2月前
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
27 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
2月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
205 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
47 4
|
2月前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
67 1
|
2月前
|
SQL 消息中间件 大数据
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
66 1
|
2月前
|
SQL 大数据 Apache
大数据-159 Apache Kylin 构建Cube 准备和测试数据(二)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(二)
83 1
|
2月前
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
40 2
|
2月前
|
存储 监控 网络安全
内网渗透测试基础——敏感数据的防护
内网渗透测试基础——敏感数据的防护