【Linux | C++ 】基于环形队列的多生产者多消费者模型(Linux系统下C++ 代码模拟实现)

简介: 【Linux | C++ 】基于环形队列的多生产者多消费者模型(Linux系统下C++ 代码模拟实现)

引言

在上一篇文章中,我们深入探讨了Linux操作系统中的POSIX信号量,这是一个强大的同步机制,用于协调进程或线程对共享资源的访问。通过对信号量的深入理解和应用,我们学习了如何有效地解决并发编程中的竞争条件,确保程序的稳定性和效率。随着并发编程技术的不断深入,理解和掌握更多同步模型对于开发高性能、可靠的软件系统变得尤为重要。因此,本篇文章将继续我们的并发编程之旅,引入一个经典且实用的同步模型——基于环形队列的生产者消费者模型。

在本文中,我们将详细探讨基于环形队列的生产者消费者模型的设计和实现。我们将介绍环形队列的数据结构,分析生产者和消费者之间的同步机制,探索如何利用前文提到的POSIX信号量以及其他同步工具(如互斥锁)来实现生产者和消费者之间高效、安全的数据交换。通过具体的代码示例和案例分析,读者将能够深入理解生产者消费者模型的工作原理,掌握如何在实际项目中设计和实现基于环形队列的高效同步模型。

探索基于环形队列的生产者消费者模型,不仅能够加深我们对并发编程同步机制的理解,还能够提升我们解决实际问题的能力。让我们一起继续并发编程的探索之旅,解锁更多的编程技巧和知识。

一、生产者消费者模型

生产者消费者模型是并发编程中一个经典且重要的问题模型,它描述了两类主体——生产者(Producer)和消费者(Consumer)在并发环境下对共享资源(通常是缓冲区或队列)的访问模式。生产者负责生成数据并将其放入缓冲区,而消费者则从缓冲区取出数据进行处理。该模型的核心在于解决生产者和消费者之间的同步与通信问题,保证数据在生产和消费时的一致性和可用性,同时避免资源的冲突和浪费。对于希望深入了解生产者消费者模型的读者,我们在之前的内容中有所介绍——链接:⭕生产者消费者模型

通过上述简介,希望读者能够对生产者消费者模型有一个初步的认识和理解。在并发编程的实践中,该模型不仅是一个常见的问题场景,也提供了一种思考并发问题的方法论,对于提高编程技能和系统设计能力都有重要意义。

二、环形队列简介

环形队列是一种固定大小的、使用数组实现的队列数据结构,特别在于其首尾相连的循环特性。这种结构允许当数组达到其容量上限时,新加入的元素可以放置在数组的开始位置(如果那里有空位)。环形队列的这一设计使得它在空间利用和操作效率上具有显著优势,尤其适用于有固定缓冲区需求的场景。

🚩主要特点包括:

  • 固定大小:一旦创建,队列的大小就固定不变。
  • 高效操作:入队和出队操作都非常高效,因为它们仅涉及指针的简单移动。
  • 两个指针:使用头指针和尾指针来分别追踪队列的第一个和最后一个元素。

环形队列广泛应用于操作系统、网络通信、生产者消费者模型等多个领域,特别是在需要高效管理固定缓冲区资源的场合。实现环形队列时,关键在于正确管理头尾指针的位置,并准确判断队列的空或满状态。

三、基于环形队列的生产者消费者模型(C++ 代码模拟实现)

⭕Makefile文件

ring_queue:testMain.cc
  g++ -o $@ $^ -std=c++11 -lpthread
.PHONY:clean
clean:
  rm -f ring_queue

这段代码是一个Makefile脚本,用于编译和清理一个名为ring_queue的项目。

⭕ . h 头文件

✅sem.hpp

// 防止头文件重复包含的预处理指令。
#ifndef _SEM_HPP_
#define _SEM_HPP_

// 引入输入输出流库,虽然在此代码中未直接使用,可能为后续扩展预留。
#include <iostream>
// 引入POSIX信号量的头文件。
#include <semaphore.h>

// 定义一个类 Sem。
class Sem
{
public:
    // 构造函数,接收一个整数value作为信号量的初始值。
    Sem(int value)
    {
        // 初始化信号量,其中&sem_是信号量对象的地址,
        // 0表示信号量是当前进程的局部信号量,
        // value是信号量的初始值。
        sem_init(&sem_, 0, value);
    }
    
    // p操作,也称为wait操作,用于减少信号量的值。
    // 如果信号量的值为0,则调用此方法的线程将阻塞,直到信号量的值大于0。
    void p()
    {
        sem_wait(&sem_);
    }
    
    // v操作,也称为signal操作,用于增加信号量的值。
    // 如果有其他线程因为等待此信号量而阻塞,则它们中的一个将被唤醒。
    void v()
    {
        sem_post(&sem_);
    }
    
    // 析构函数,用于销毁信号量。
    ~Sem()
    {
        sem_destroy(&sem_);
    }

private:
    // 私有成员变量,存储信号量对象的实例。
    sem_t sem_;
};

// 预处理指令的结束标志。
#endif

这个Sem类提供了简单的接口来进行信号量的基本操作:初始化(构造函数)、等待(p方法)、信号(v方法)和销毁(析构函数)。通过这个类,可以更方便地在C++项目中使用POSIX信号量进行同步操作

✅ringQueue.hpp

// 防止头文件重复包含的预处理指令。
#ifndef _Ring_QUEUE_HPP_
#define _Ring_QUEUE_HPP_

// 引入所需的头文件。
#include <iostream>
#include <vector>
#include <pthread.h>
#include "sem.hpp"

// 定义一个全局常量作为队列的默认大小。
const int g_default_num = 5;

// 定义一个模板类RingQueue,用于实现环形队列。
template<class T>
class RingQueue
{
public:
    // 构造函数,参数default_num指定队列的大小,默认为g_default_num。
    RingQueue(int default_num = g_default_num)
    : ring_queue_(default_num), 
      num_(default_num),
      c_step(0),
      p_step(0),
      space_sem_(default_num), // 初始化空间信号量,表示可用空间数量。
      data_sem_(0) // 初始化数据信号量,表示队列中的数据项数量。
    {
        pthread_mutex_init(&clock, nullptr); // 初始化消费者互斥锁。
        pthread_mutex_init(&plock, nullptr); // 初始化生产者互斥锁。
    }
    
    // 析构函数,销毁互斥锁。
    ~RingQueue()
    {
        pthread_mutex_destroy(&clock);
        pthread_mutex_destroy(&plock);
    }
    
    // push方法,生产者调用,向队列中添加元素。
    void push(const T &in)
    {
        space_sem_.p(); // 等待有空间可写。
        pthread_mutex_lock(&plock); // 获取生产者互斥锁。
        ring_queue_[p_step++] = in; // 将元素添加到队列中。
        p_step %= num_; // 环形逻辑,如果到达末尾则回到开始。
        pthread_mutex_unlock(&plock); // 释放生产者互斥锁。
        data_sem_.v(); // 增加数据信号量,表示有新数据可读。
    }
    
    // pop方法,消费者调用,从队列中取出元素。
    void pop(T *out)
    {
        data_sem_.p(); // 等待有数据可读。
        pthread_mutex_lock(&clock); // 获取消费者互斥锁。
        *out = ring_queue_[c_step++]; // 从队列中取出元素。
        c_step %= num_; // 环形逻辑,如果到达末尾则回到开始。
        pthread_mutex_unlock(&clock); // 释放消费者互斥锁。
        space_sem_.v(); // 增加空间信号量,表示有空间可写。
    }

private:
    std::vector<T> ring_queue_; // 使用vector存储队列元素。
    int num_; // 队列的大小。
    
    int c_step; // 消费者在队列中的当前位置。
    int p_step; // 生产者在队列中的当前位置。
    
    Sem space_sem_; // 控制队列空间的信号量。
    Sem data_sem_; // 控制队列中数据的信号量。
    pthread_mutex_t clock; // 消费者互斥锁。
    pthread_mutex_t plock; // 生产者互斥锁。
};

#endif   // 预处理指令的结束标志。

这个环形队列的实现利用信号量space_sem_和data_sem_来控制队列的空间和数据,确保生产者不会在队列满时添加元素,消费者不会在队列空时尝试取出元素。同时,通过两个互斥锁clock和plock分别保护消费者和生产者的操作,防止并发环境下的数据竞争问题。这样的设计使得RingQueue既能高效地管理数据,又能保证线程安全。

⭕ . cpp 文件

✅testMain.cpp

// 包含RingQueue类的头文件。
#include "ringQueue.hpp"
#include <cstdlib> // 包含标准库,用于rand()等函数。
#include <ctime>   // 用于time()函数。
#include <sys/types.h> // 包含类型定义,例如pid_t。
#include <unistd.h>    // 包含各种常量和类型,并声明了各种函数,例如sleep()和getpid()。

// 消费者线程的工作函数。
void *consumer(void *args)
{
    RingQueue<int> *rq = (RingQueue<int> *)args; // 将传入的参数转换为RingQueue指针。
    while(true)
    {
        sleep(1); // 休眠1秒,模拟处理时间。
        int x;
        rq->pop(&x); // 从环形队列中取出一个元素。
        // 打印消费信息,包括消费的值和当前线程ID。
        std::cout << "消费: " << x << " [" << pthread_self() << "]" << std::endl;
    }
}

// 生产者线程的工作函数。
void *productor(void *args)
{
    RingQueue<int> *rq = (RingQueue<int> *)args; // 将传入的参数转换为RingQueue指针。
    while(true)
    {
        int x = rand() % 100 + 1; // 生成一个1到100之间的随机数。
        // 打印生产信息,包括生产的值和当前线程ID。
        std::cout << "生产: " << x << " [" << pthread_self() << "]" << std::endl;
        rq->push(x); // 将生成的随机数放入环形队列中。
    }
}

int main()
{
    srand((uint64_t)time(nullptr) ^ getpid()); // 设置随机数种子,确保每次运行结果不同。
    RingQueue<int> *rq = new RingQueue<int>(); // 创建一个RingQueue对象。
    pthread_t c[3], p[2]; // 定义线程ID数组,3个消费者和2个生产者。

    // 创建消费者线程。
    pthread_create(&c[0], nullptr, consumer, (void*)rq);
    pthread_create(&c[1], nullptr, consumer, (void*)rq);
    pthread_create(&c[2], nullptr, consumer, (void*)rq);

    // 创建生产者线程。
    pthread_create(&p[0], nullptr, productor, (void*)rq);
    pthread_create(&p[1], nullptr, productor, (void*)rq);

    // 等待所有线程完成。
    for(int i = 0; i < 3; i++) pthread_join(c[i], nullptr);
    for(int i = 0; i < 2; i++) pthread_join(p[i], nullptr);

    return 0; // 程序结束。
}


首先通过srand()设置随机数种子,以确保每次程序运行时生成的随机数序列不同。然后,它创建了一个RingQueue<int>对象,用于存储生产者线程生成的整数。

接着,代码创建了3个消费者线程和2个生产者线程。每个线程都被分配了一个工作函数:生产者调用productor函数,而消费者调用consumer函数。这些线程通过pthread_create函数创建,并将RingQueue对象作为参数传递给它们的工作函数。

最后,main函数使用pthread_join等待所有线程完成,以确保程序在所有线程都执行完毕后才退出。

温馨提示

感谢您对博主文章的关注与支持!如果您喜欢这篇文章,可以点赞、评论和分享给您的同学,这将对我提供巨大的鼓励和支持。另外,我计划在未来的更新中持续探讨与本文相关的内容。我会为您带来更多关于Linux以及C++编程技术问题的深入解析、应用案例和趣味玩法等。如果感兴趣的话可以关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。我们期待与您建立更紧密的互动,共同探索Linux、C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!

目录
相关文章
|
2月前
|
网络协议 安全 Linux
Linux C/C++之IO多路复用(select)
这篇文章主要介绍了TCP的三次握手和四次挥手过程,TCP与UDP的区别,以及如何使用select函数实现IO多路复用,包括服务器监听多个客户端连接和简单聊天室场景的应用示例。
99 0
|
2月前
|
存储 Linux C语言
Linux C/C++之IO多路复用(aio)
这篇文章介绍了Linux中IO多路复用技术epoll和异步IO技术aio的区别、执行过程、编程模型以及具体的编程实现方式。
115 1
Linux C/C++之IO多路复用(aio)
|
2月前
|
资源调度 Linux 调度
Linux c/c++之进程基础
这篇文章主要介绍了Linux下C/C++进程的基本概念、组成、模式、运行和状态,以及如何使用系统调用创建和管理进程。
49 0
|
1月前
|
算法 安全 C++
提高C/C++代码的可读性
提高C/C++代码的可读性
59 4
|
2月前
|
Ubuntu Linux 编译器
Linux/Ubuntu下使用VS Code配置C/C++项目环境调用OpenCV
通过以上步骤,您已经成功在Ubuntu系统下的VS Code中配置了C/C++项目环境,并能够调用OpenCV库进行开发。请确保每一步都按照您的系统实际情况进行适当调整。
602 3
|
2月前
|
资源调度 Linux 调度
Linux C/C++之线程基础
这篇文章详细介绍了Linux下C/C++线程的基本概念、创建和管理线程的方法,以及线程同步的各种机制,并通过实例代码展示了线程同步技术的应用。
36 0
Linux C/C++之线程基础
|
2月前
|
Linux C++
Linux C/C++之IO多路复用(poll,epoll)
这篇文章详细介绍了Linux下C/C++编程中IO多路复用的两种机制:poll和epoll,包括它们的比较、编程模型、函数原型以及如何使用这些机制实现服务器端和客户端之间的多个连接。
40 0
Linux C/C++之IO多路复用(poll,epoll)
|
2月前
|
网络协议 Linux 网络性能优化
Linux C/C++之TCP / UDP通信
这篇文章详细介绍了Linux下C/C++语言实现TCP和UDP通信的方法,包括网络基础、通信模型、编程示例以及TCP和UDP的优缺点比较。
52 0
Linux C/C++之TCP / UDP通信
|
2月前
|
消息中间件 Linux API
Linux c/c++之IPC进程间通信
这篇文章详细介绍了Linux下C/C++进程间通信(IPC)的三种主要技术:共享内存、消息队列和信号量,包括它们的编程模型、API函数原型、优势与缺点,并通过示例代码展示了它们的创建、使用和管理方法。
44 0
Linux c/c++之IPC进程间通信
|
2月前
|
Linux C++
Linux c/c++进程间通信(1)
这篇文章介绍了Linux下C/C++进程间通信的几种方式,包括普通文件、文件映射虚拟内存、管道通信(FIFO),并提供了示例代码和标准输入输出设备的应用。
38 0
Linux c/c++进程间通信(1)