【深度优先搜索 图论 树】2872. 可以被 K 整除连通块的最大数目

简介: 【深度优先搜索 图论 树】2872. 可以被 K 整除连通块的最大数目

本文涉及知识点

深度优先搜索 图论 树

图论知识汇总

LeetCode 2872. 可以被 K 整除连通块的最大数目

给你一棵 n 个节点的无向树,节点编号为 0 到 n - 1 。给你整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 有一条边。

同时给你一个下标从 0 开始长度为 n 的整数数组 values ,其中 values[i] 是第 i 个节点的 值 。再给你一个整数 k 。

你可以从树中删除一些边,也可以一条边也不删,得到若干连通块。一个 连通块的值 定义为连通块中所有节点值之和。如果所有连通块的值都可以被 k 整除,那么我们说这是一个 合法分割 。

请你返回所有合法分割中,连通块数目的最大值 。

示例 1:

输入:n = 5, edges = [[0,2],[1,2],[1,3],[2,4]], values = [1,8,1,4,4], k = 6

输出:2

解释:我们删除节点 1 和 2 之间的边。这是一个合法分割,因为:

  • 节点 1 和 3 所在连通块的值为 values[1] + values[3] = 12 。
  • 节点 0 ,2 和 4 所在连通块的值为 values[0] + values[2] + values[4] = 6 。
    最多可以得到 2 个连通块的合法分割。
    示例 2:

输入:n = 7, edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]], values = [3,0,6,1,5,2,1], k = 3

输出:3

解释:我们删除节点 0 和 2 ,以及节点 0 和 1 之间的边。这是一个合法分割,因为:

  • 节点 0 的连通块的值为 values[0] = 3 。
  • 节点 2 ,5 和 6 所在连通块的值为 values[2] + values[5] + values[6] = 9 。
  • 节点 1 ,3 和 4 的连通块的值为 values[1] + values[3] + values[4] = 6 。
    最多可以得到 3 个连通块的合法分割。

提示:

1 <= n <= 3 * 104

edges.length == n - 1

edges[i].length == 2

0 <= ai, bi < n

values.length == n

0 <= values[i] <= 109

1 <= k <= 109

values 之和可以被 k 整除。

输入保证 edges 是一棵无向树。

深度优先搜索

共n-1条边,对应除根节点外,所有节点和其父节点。

除根节点外,子树所有节点之和如果是k的倍数,则断开。因为后代断开,不影响祖先节点断开。

连通块数 = 断开数 +1。

代码

class CNeiBo
{
public: 
  static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) 
  {
    vector<vector<int>>  vNeiBo(n);
    for (const auto& v : edges)
    {
      vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
      if (!bDirect)
      {
        vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
      }
    }
    return vNeiBo;
  } 
  static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
  {
    vector<vector<std::pair<int, int>>> vNeiBo(n);
    for (const auto& v : edges)
    {
      vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
      if (!bDirect)
      {
        vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
      }
    }
    return vNeiBo;
  }
  static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext)
  {
    vector<vector<int>> vNeiBo(rCount * cCount);
    auto Move = [&](int preR, int preC, int r, int c)
    {
      if ((r < 0) || (r >= rCount))
      {
        return;
      }
      if ((c < 0) || (c >= cCount))
      {
        return;
      }
      if (funVilidCur(preR, preC) && funVilidNext(r, c))
      {
        vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);
      }
    };
    for (int r = 0; r < rCount; r++)
    {
      for (int c = 0; c < cCount; c++)
      {
        Move(r, c, r + 1, c);
        Move(r, c, r - 1, c);
        Move(r, c, r, c + 1);
        Move(r, c, r, c - 1);
      }
    }
    return vNeiBo;
  }
  static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat)
  {
    vector<vector<int>> neiBo(neiBoMat.size());
    for (int i = 0; i < neiBoMat.size(); i++)
    {
      for (int j = i + 1; j < neiBoMat.size(); j++)
      {
        if (neiBoMat[i][j])
        {
          neiBo[i].emplace_back(j);
          neiBo[j].emplace_back(i);
        }
      }
    }
    return neiBo;
  }
};
class Solution {
public:
  int maxKDivisibleComponents(int n, vector<vector<int>>& edges, vector<int>& values, int k) {
    m_values = values;
    m_iK = k;
    auto neiBo = CNeiBo::Two(n, edges, false);
    DFS(neiBo, 0, -1);
    return m_iRet+1;
  }
  long long DFS(vector<vector<int>>& neiBo, int cur, int par)
  {
    long long llSum = m_values[cur];
    for (const auto& next : neiBo[cur])
    {
      if (next == par)
      {
        continue;
      }
      llSum += DFS(neiBo, next, cur);
    }
    if ((0 == llSum % m_iK)&&( 0 != cur)) { m_iRet++; }
    return llSum;
  }
  vector<int> m_values;
  int m_iK;
  int m_iRet = 0;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 C++17

如无特殊说明,本算法用**C++**实现。

相关文章
|
7月前
|
人工智能 测试技术 Windows
【深度优先搜索】【树】【状态压缩】2791. 树中可以形成回文的路径数
【深度优先搜索】【树】【状态压缩】2791. 树中可以形成回文的路径数
|
7月前
|
算法 测试技术
【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径
【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径
|
7月前
|
Java C++ Python
leetcode-538:把二叉搜索树转换为累加树
leetcode-538:把二叉搜索树转换为累加树
37 0
|
7月前
|
测试技术
【动态规划】【组合数学】1866. 恰有 K 根木棍可以看到的排列数目
【动态规划】【组合数学】1866. 恰有 K 根木棍可以看到的排列数目
|
6月前
|
算法
数据结构和算法学习记录——层序遍历(层次遍历)、二叉树遍历的应用(输出二叉树中的叶节点、求二叉树的高度、二元运算表达式树及其遍历、由两种遍历序列确定二叉树)
数据结构和算法学习记录——层序遍历(层次遍历)、二叉树遍历的应用(输出二叉树中的叶节点、求二叉树的高度、二元运算表达式树及其遍历、由两种遍历序列确定二叉树)
61 0
|
7月前
【力扣】104. 二叉树的最大深度、111. 二叉树的最小深度
【力扣】104. 二叉树的最大深度、111. 二叉树的最小深度
|
7月前
递归方法来计算二叉树的双分支节点个数
递归方法来计算二叉树的双分支节点个数
|
7月前
|
人工智能 算法 BI
【深度优先搜索】【C++算法】834 树中距离之和
【深度优先搜索】【C++算法】834 树中距离之和
|
算法
代码随想录算法训练营第十五天 | LeetCode 104. 二叉树的最大深度、559. N 叉树的最大深度、111.二叉树的最小深度、222. 完全二叉树的节点个数
代码随想录算法训练营第十五天 | LeetCode 104. 二叉树的最大深度、559. N 叉树的最大深度、111.二叉树的最小深度、222. 完全二叉树的节点个数
59 0
|
Cloud Native 算法 Go
886. 可能的二分法:图+深度优先算法
这是 力扣上的 886. 可能的二分法,难度为 中等。