数据结构和算法学习记录——层序遍历(层次遍历)、二叉树遍历的应用(输出二叉树中的叶节点、求二叉树的高度、二元运算表达式树及其遍历、由两种遍历序列确定二叉树)

简介: 数据结构和算法学习记录——层序遍历(层次遍历)、二叉树遍历的应用(输出二叉树中的叶节点、求二叉树的高度、二元运算表达式树及其遍历、由两种遍历序列确定二叉树)

层序遍历

层序遍历可以通过一个队列来实现,其基本过程为:

先根节点入队,然后:

  1. 从队列中取出一个元素;
  2. 访问该元素所指的节点;
  3. 若该元素所指节点的左、右孩子节点非空, 则将其左、右孩子的指针顺序入队。
  4. 循环123的步骤,直到队列为空。

思路图解

代码实现

void LevelOrderTraversal(BinTree BT)
{
  Queue Q;
  BinTree T;
  if (!BT)
  {
    return; //若为空树则直接返回
  }
  Q = CreateQueue(); //创建并初始化队列Q
  Add(Q, BT);
  while (!IsEmptyQ(Q))
  {
    T = DeleteQ(Q);
    printf("%d\n", T->data);  //访问取出来的节点
    //若该元素的左右孩子节点不为空,则依次入队
    if (T->Left)
    {
      AddQ(Q, T->Left);     
    }
    if (T->Right)
    {
      AddQ(Q, T->Right);
    }
  }
}

二叉树遍历的应用

输出二叉树中的叶节点

之前讲过的递归先序遍历二叉树写法很简单,而要输出二叉树中的叶节点,就可以在进行遍历的过程中进行检测,如果为叶节点则输出,否则继续遍历。 叶节点即左孩子节点为空、右孩子节点也为空。

代码实现

void PreOrderPrintLeaves(BinTree BT)
{
  if (BT)
  {
    if (!BT->Left && !BT->Right)
      printf("%d ", BT->data);
    PreOrderPrintLeaves(BT->Left);
    PreOrderPrintLeaves(BT->Right);
  }
}

求二叉树的高度

树是递归定义的,一颗二叉树的高度应该等于左右两颗子树的最大高度+1 求二叉树的高度,利用的是后序遍历的一种程序框架来实现的。

思路图解

代码实现

int PostOrderGetHeight(BinTree BT)
{
  int HL, HR, MaxH;
  if (BT)
  {
    HL = PostOrderGetHeight(BT->Left);   //求左子树的高度
    HR = PostOrderGetHeight(BT->Right);  //求右子树的高度
    MaxH = (HL > HR) ? HL : HR;          //取左右子树的最大高度
    return (MaxH + 1);                   //返回树的高度
  }
  else
  {
    return 0;                            //空树的高度为0
  }
}

二元运算表达式树及其遍历

对上面的表达式树进行三种遍历,可以得到三种不同的访问结果:

试着分别写出上面表达式树前序中序和后序遍历的不同表达式,复习一遍之前讲的树的遍历。



先序遍历可以得到前缀表达式:++a*bc*+*defg


中序遍历可以得到中缀表达式:a+b*c+d*e+f*g


后序遍历可以得到后缀表达式:abc*+de*f+g*+


但需要注意的是:中缀表达式会受到运算符优先级的影响,所以单单这样通过中序遍历得出的中缀表达式是不完全准确的。

解决方法是:在输出左子树之前,先输出一个左括号,左子树结束的时候再输出一个右括号。

由两种遍历序列确定二叉树

已知三种遍历中的任意两种遍历序列,能否唯一确定一颗二叉树呢?

答案是:两种遍历序列中,必须要有一种是中序遍历才能够唯一确定一颗二叉树

假设没有中序,看下面两个序列:

先序遍历序列:A B

后序遍历序列:B A

像这样一组简单的序列,只有先序遍历序列和后序遍历序列的情况下,就有两颗是符合的二叉树,其中根节点是容易确定的,先序的第一个节点就是根,后序的最后一个节点就是根;但是左右节点是不好区分的,所以就导致了只有先序序列和后序序列的情况下没法唯一地确认一颗二叉树。


下面就来看看,已知先序序列和中序序列,怎么样来确定一颗二叉树。

思路:

  1. 根据先序遍历序列第一个节点确定根节点;
  2. 根据根节点在中序遍历序列中分割出左右两个子序列;
  3. 对左子树和右子树分别递归使用相同的方法继续分解。


举个例子清晰一下思路:

先序序列: abcdefghij

中序序列: cbedahgijf

所以最终通过先序遍历序列和中序遍历序列唯一确定的二叉树就为:


end



目录
相关文章
|
1月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
191 9
|
1月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
32 1
|
24天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
45 5
|
1月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
1月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
1月前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
51 4
|
2月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
48 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器