Python贷款违约预测:Logistic、Xgboost、Lightgbm、贝叶斯调参/GridSearchCV调参|数据分享

简介: Python贷款违约预测:Logistic、Xgboost、Lightgbm、贝叶斯调参/GridSearchCV调参|数据分享

银行贷款业务是银行的主要盈利方式,对于具体的贷款申请人,是否可以同意贷款申请是一件十分重要的步骤,如果贷款人在贷款后出现违约行为,这将对银行的资金流稳定性造成不利的影响。因此针对贷款人的“数据信息”进行处理和违约预测具有举足轻重的作用。对于金融行业来说,贷款业务及人员信息十分复杂,对于数据特征的处理十分重要,在数据处理完成后,通过机器学习模型进行预测以判断贷款人是否会违约点击文末“阅读原文”了解更多


解决方案

任务/目标

根据金融业务要求,运用数据源分析预测贷款人是否违约。

数据源准备

特征转换

  • 对于贷款金额、年收入等数值型数据,使用数据分箱的方法分为四类用数字0-3表示,阈值根据样本总数均分位处的值确定;对于贷款目的、贷款等级等类别型数据,使用独热编码的方法处理;对于放贷日期等时间类型数据,转换成标准时间格式;对于匿名n系列数据,使用seaborn进行特征性筛查,剔除相关性高的特征。

构造特征

结合金融业务特点,由贷款金额、利率、年限构建新特征贷款利息,由信贷开立时间和放贷时间构建新特征经历时间等。

 

划分训练集和测试集

将训练集划分为:训练集训练模型、验证集评估模型、测试集最后一次测试模型,比例为:6:2:2 ,最后使用训练集预测结果,最后不加载测试集去训练,会造成测试集数据泄露。本项目中80万训练集,20万验证集,20万测试集查看文末了解数据免费获取方式

建模

Logistic:

逻辑回归是一种分类算法,多用于 两个类别之间的判断, 逻辑回归的损失称为对数似然损失, 使用梯度下降的方法优化损失函数的值。

Xgboost:

GBDT是基于boosting方法将所有弱分类器的结果相加等于预测值,然后下一个弱分类器去拟合误差函数对预测值的残差,每棵树就是一个弱分类器。Xgboost本质上也是一种GBDT,在损失函数中添加了正则化项L1和L2来控制模型的复杂度,提高泛化能力。

Lightgbm

LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,具有 支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率。GBDT在每一次迭代过程中,都需要遍历整个训练集多次,因此与内存产生冲突,对于海量数据是很不利的。Xgboost采用预排序方法的决策树算法,虽然对于分割点的寻找较为准确,但同时保存了特征值和特征排序的结果,空间消耗很大,并且在遍历分割点时计算分裂增益,时间消耗也大。Lightgbm采用直方图算法将连续特征放入直方图箱子中,从而减少内存使用和时空复杂度。

模型优化

1.特征工程,贝叶斯调参/GridSearchCV调参

在此案例中,Xgboost和Lightgbm算法模型预值的AUC值较好,其预测结果如下:

调参前两种模型的AUC值:

895cdde7a12dde12eba50d8b3e6cf4be.png

调参后:

Xgboost的AUC值获得一定的提升,关于模型还有较大的优化空间。

911cecbbbbd97fd570c2285dc319fb52.png

Lightgbm:

通过贝叶斯调参后,找到了一组最优解,AUC值提升至0.7234。


a977487b279bd6aee609188e61d72b6b.png

最后输出为测试集样本发生贷款违约的概率值。

8d98a90ad17209c4e91f15f41c82aebc.png

相关文章
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护 【10月更文挑战第3天】
102 0
|
27天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
11天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
21 1
|
12天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
13天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
49 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
1月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
42 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
1月前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
70 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
25天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
53 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
1月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
46 2