python、R语言ARIMA-GARCH分析南方恒生中国企业ETF基金净值时间序列分析

简介: python、R语言ARIMA-GARCH分析南方恒生中国企业ETF基金净值时间序列分析

全文链接:https://tecdat.cn/?p=34123

分析师:Yuyan Wang


虽然中国股票市场日益完善,但还不完全是弱有效市场,因此中国股票市场存在比较明显的通过技术分析达到的套利机会点击文末“阅读原文”了解更多


解决方案


任务/目标

根据基金净值的要求,帮助客户运用多种模型分析实现股票走势的预测。


数据源准备


本次数据来源于天天基金网南方恒生中国企业ETF版面,数据获取采用python(版本3.6)爬虫,数据分析部分则是采用Rstudio(3.6.2)。由于南方恒生中国企业ETF没有分红,所以单位净值和累计净值相同,本次分析采用单位净值(数据采用从2018/2/8~2020/6/10,共556个)作为数据分析对象。本次数据分析采用的数据模型有AR, MA,ARMA,GARCH模型。


数据预处理


将获得数据进行标准化,并作图发现数据超出了[0,1]的限制,于是我们可以初步估计数据不满足正态性。其次,我们采取箱形图法分析分析数据中可能存在的异常值,发现数据中存在三个异常值点,2020-03-18 -3.636842,2020-03-19 -4.182578,2020-03-23 -3.552882。

image.png

数据波动性大且不聚集。于是对数据进行二阶差分(一次差分模型拟合效果不好)。利用箱型图法进行异常值检测,发现二阶差分之后的数据异常值增多,但是从图上可以看出数据具有集群波动性,在这里初步估计数据具有garch模型的特点。

image.png

构造


image.png

首先考察时间序列 时间序列平方以及绝对值的ACF和PACF图,判断二阶差分具有一定的ARCH性质,接下来我们使用MC.LEOAD.LI方法检验我们刚才的判断。右图说明,二阶差分数据具有很强的ARCH特征。现在我们计算其峰度以及偏度,判断其厚尾性。偏度为0.2112377,峰度为2.870266,j-b检验数为171.9739 远大于kai(2)的置信度5% 时的3.84, 因此相信序列存在高阶相关性和厚尾结构。

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

利用EACF方法判断garch的阶数。我们选取EACF图建议采用GARCH(1,2)模型。根据最小二乘法,发现模型参数α2不显著,因此考虑GARCH(1,1)模型。

image.png

image.png

发现GARCH模型的各项系数均显著。并比较GARCH(1,1)和GARCH(1,2)的AIC系数。发现GARCH(1,1)的系数665.12略小于GARCH(1,2)的666.77。


点击标题查阅往期内容


MATLAB用GARCH-EVT-Copula极值理论模型VaR预测分析股票投资组合


01

02

03

04

image.png


我们选用GARCH(1,1)模型进行模型诊断。根据QQ图发现GARCH(1,1)模型残差近似满足正态分布,其次我们检验shapiro数p-value = 0.8696 大于0.05,故我们认为残差满足正态性分布。我们采用L-B检验数,检验残差的独立性,这里发现m<11时,独立性满足。

image.png

image.png


划分训练集和测试集


考虑到最终模型会预测将来的某时间段的销量,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下:假设我们以2018/2/8~2020/5/28的单位净值作为训练,最后5个交易日的数据作为测试。


建模


ARIMA 一般应用在股票和电商销量领域

ARIMA模型是指将非平稳时间序列转化为平稳时间序列,然后将结果变量做自回归(AR)和自平移(MA)。

GARCH

金融市场领域常用的分析模型,自回归条件异方差模型,消除arma模型对于同方差假设引起的问题,能够更好的认识到风险的波动性


模型优化


混合模型

由于上述模型确定具有一定的主观性,现考察混合模型是否能够更好的拟合数据。主要考察两种混合模型--ARMA(1,3) + GARCH(1,2)和 MA(1) + GARCH(1,1)。

image.png

采用h步向前估计,对之后的数据进行预测,其中将最后一天的数据(2020/06/10)作为预测原点,方差作为σt|t-1的初值。程序中预测了未来五次交易的数据,并做了上下区间。

发现预测数据与实际数据相差不大,并且在预测区间当中。

可以看出,销量的预测值的趋势已经基本与真实基金趋势保持一致,但是在预测期较长的区间段,其预测值之间的差别较大。

相关文章
|
25天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
119 70
|
27天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
134 68
|
23天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
101 36
|
17天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
65 15
|
21天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
86 18
|
30天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
50 8
|
5天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
34 0
|
30天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
39 0
|
25天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
24天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。