数据代码分享|Python对全球Covid-19疫情失业数据相关性、可视化分析

简介: 数据代码分享|Python对全球Covid-19疫情失业数据相关性、可视化分析

全文链接:https://tecdat.cn/?p=33852


“失业”是 Covid-19 疫情的许多负面影响之一,几乎每个国家都受到了影点击文末“阅读原文”获取完整代码数据


帮助客户研究 Covid-19 期间的失业情况可能不仅揭示了该疫情对每个国家的影响程度,还揭示了世界各地不同的裁员文化。

在一个经济体中辞退工人的决策中有哪些因素?根据《商业内幕》(Business Insider)的报道,文化扮演着至关重要的角色。德国公司必须设立工厂委员会——代表工人在执行委员会面前发言的员工——以寻求解雇替代方案。瑞典有计划帮助重新培训被解雇的员工,并为他们提供慷慨的失业救济金。而在像日本这样有关职业保障的长期传统国家,裁员甚至被认为是一种社会禁忌。

除了失业外,该研究还旨在调查数据集提供的与就业有关的其他因素,例如劳动力依赖比和男女就业比率。

调查问题:

  1. 哪些国家和地区失去的工作小时数百分比最高和最低?
  2. 收入水平和失业率之间是否存在相关性?
  3. 哪些国家和地区劳动力依赖比最高和最低?
  4. 失去的工作小时数和劳动力依赖比之间是否存在相关性?
  5. 哪些国家和地区的男女劳动力就业比率最高和最低?


数据集


以 cvs 形式获取的数据查看文末了解数据免费获取方式。大多数估计值来自 2020 年。

image.png

数据集包括以下信息:

  • 就业人员的总每周工作时间
  • 相对于基线(2019 年第四季度)失去的小时数百分比
  • 相对于基线(2019 年第四季度)失去的小时数百分比,以全职就业损失表示。该指标通过将因 Covid-19 而失去的每周工时数除以 40 得到。
  • 相对于基线(2019 年第四季度)失去的小时数百分比,以全职就业损失表示。该指标通过将因 Covid-19 而失去的每周工时数除以 48 得到。
  • 被赡养者(年龄为 0-14 岁的人 + 要么在劳动力外要么失业的 15 岁及以上的人)与总就业人数之间的比率。
  • 2019 年从事以下某一类别工作(无论是否在工作岗位上)的女性:a) 有薪就业;或 b) 自雇(无论是在工作还是在企业中,但不在工作中)。
  • 2019 年从事以下某一类别工作(无论是否在工作岗位上)的男性:a) 有薪就业;或 b) 自雇(无论是在工作还是在企业中,但不在工作中)。
  • 15-64 岁人口的总每周工作时间与总人口之间的比率。


理解数据


employment.head()

image.png

employment.tail()

image.png

employment.info()

image.png

employment.isnull().sum()

image.png

employment.describe()

image.png

分析


1. Covid-19期间失去的工作小时数

1.1. 概述


# 添加一个包含三个字母ISO国家代码的列
import pycountry
def findCountryAlpha3 (country_name):
    try:
    ......
# 创建一个显示Covid-19期间失去工作小时数百分比的世界地图
import matplotlib.pyplot as plt
    ......
                    color_continuous_scale=px.colors.sequential.Viridis)
fig.show()

1.2. 失去工作小时数最高和最低的国家是哪些?


# 失去工作小时数百分比最高的5个国家
employment.sort_values('percentage_of_working_hrs_lost', 
    ......

image.png

# 失去工作小时数百分比最低的5个国家
employment
    ......

image.png

# 有多少个国家的失业率高于平均水平?
lost_hours = employment['percen
    ......

世界上有 131 个国家的失业率高于平均水平。

1.3. 失业率与收入之间是否存在相关性

# 根据收入水平找到失业数据
high_income = ['World: High income',
        ......
              "Northern, Southern and Western Europe: High income",
          
        ......
              "Eastern Asia: Upper-middle income",
              "South-Eastern Asia and the Pacific: Upper-middle income",
    
        ......
lower_middle = ['World: Lower-middle income',
              "Africa: Lower-middle income", "Africa: Upper-middle 
        ......
low_income = ['World: Low income', 
              'Africa: Low income', 
          
        ......
              "Central and Western Asia: Low income"]
# 根据条件选择行:
high = employment[employment['country'].isin(high_income)]
        ......
# 基于收入水平计算失去工作小时数的平均值:
high_mean = round(high['p
        .......mean(), 2)
        ......
          
for income, avg in zip(income_types,avgs):
  
        ......

image.png

In [22]:

name_income = ['High','Upper-middle','Lower-middle','Low']
        ......
plt.show()

image.png

点击标题查阅往期内容


自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据


01

02

03

04


image.png

2. 劳动力依赖

2.1. 概览

在[23]中:

# 创建劳动力依赖比例的世界地图
import matplotlib.pyplot as plt
fig = px.choropleth(employment, locations="alpha_3",
               
    ......
fig.show()

2.2. 工作流失和劳动力依赖的相关性

在[24]中:

# 最高/最低劳动力依赖国家的工作时间损失百分比是什么样子?
columns = 
    ......
employment1.head(5)

image.png

# 工作时间损失和劳动力依赖比例之间的相关性
ld_ratio = pd.Series(emplo
    ......tio"])
    ......

在[25]中:

-0.026

在[26]中:

# 工作时间损失和劳动力依赖比例之间的关系图
ld_ratio = employment["labour
    ......
plt.show()

image.png

3. 就业性别比例

3.1. 概述

在[27]中的代码是用来计算全球范围内女性就业人数与男性就业人数的比例,并将结果可视化。

pythonCopy Code
# 计算全球范围内女性就业人数与男性就业人数的比例
import numpy as np
female = np.array(empl
        ......
employment['gender_difference'] = gender_diff
# 哪些国家的女性劳动力参与度最高和最低?
        ......round(gender_diff.mean(), 2),'%')
        ......
# 可视化全球范围内女性就业人数与男性就业人数的比例
import matplotlib.pyplot as plt
fig = px.choropleth(employment, locations="alpha_3",
        ......
                    color_contsma)
fig.show()

image.png

3.2. 比较不同地区男女劳动力参与度

在[28]中的代码是用来计算不同地区的女性劳动力参与度与男性劳动力参与度的比例,并进行了可视化。

# 计算不同地区的性别差异
female = np.array(employment['employed_female_25+_2019'])
        ......
region_group = employment[employment['country'].isin(regions)]
        ......
region_group

image.png

# 比较不同地区男女劳动力参与度的柱状图
gender_diff = [73.3
        ......8971]
plt.bar(regions, gender_diff)
        ......
plt.show()

image.png

在[30]中的代码是使用T检验检查女性劳动力参与度是否与男性劳动力参与度存在显著差异。

#进行t检验以检查女性劳动参与率是否与男性劳动参与率有所不同

#零假设:女性的劳动参与率与男性的劳动参与率无差异。
#备择假设:女性和男性的劳动参与率存在差异。
#统计显著性水平为0.05。
f = employment['employed_female_25+_2019'
    ......
print('{0:0.3f}'.format(pval))
#通过p值0.105,我们不能拒绝零假设。
0.10

更多可视化


1. 相关矩阵


emplorr()

image.png

#使用seaborn热图绘制相关矩阵
sns.heatmap(empl
    ......square=True);

image.png

#创建失去工作小时数的直方图
employmet.hist(bins=15)

image.png

#计算每个地区每周工作小时数的比率
columns1 = ['country','rat
    ......olumns1)
region_group1

image.png

#创建每个地区每周工作小时数比率的图表
sns.barplot("country", 
    ......per region")


[Text(0.5, 1.0, 'Working hours per region')]

image.png

结论


  • 在疫情期间,全世界的国家都面临就业不安全。失去工作时间的平均比率约为9%。不同国家和地区的影响有所不同,有些国家像新西兰或芬兰遭受的损失很小,而南美洲的一些国家面临着高达27.5%的惊人失业率。
  • 收入和失业的关系不明确,需要深入研究。虽然收入水平较高的地区比中高收入和中低收入地区承受的失业量少,但低收入地区的失业时间最少。
  • 拥有最高劳动力依赖比例的国家位于非洲。尽管劳动力依赖率最高的国家也有较高的失业率,但统计数据表明,劳动力依赖性与失业关系不显著。
  • 平均而言,2019年劳动力市场女性占男性的七分之五。欧洲在劳动力市场性别平等方面继续领先。


相关文章
|
11天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
3天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
27 7
|
2天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
12 3
|
3天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
10 2
|
8天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化
|
9天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
25 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
10天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
4天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
10天前
|
弹性计算 安全 小程序
编程之美:Python让你领略浪漫星空下的流星雨奇观
这段代码使用 Python 的 `turtle` 库实现了一个流星雨动画。程序通过创建 `Meteor` 类来生成具有随机属性的流星,包括大小、颜色、位置和速度。在无限循环中,流星不断移动并重新绘制,营造出流星雨的效果。环境需求为 Python 3.11.4 和 PyCharm 2023.2.5。
29 9
|
2天前
|
数据处理 Python
从零到英雄:Python编程的奇幻旅程###
想象你正站在数字世界的门槛上,手中握着一把名为“Python”的魔法钥匙。别小看这把钥匙,它能开启无限可能的大门,引领你穿梭于现实与虚拟之间,创造属于自己的奇迹。本文将带你踏上一场从零基础到编程英雄的奇妙之旅,通过生动有趣的比喻和实际案例,让你领略Python编程的魅力,激发内心深处对技术的渴望与热爱。 ###