Spring AI 抢先体验,5 分钟玩转 Java AI 应用开发

简介: Spring Cloud Alibaba AI 以 Spring AI 为基础,并在此基础上提供阿里云通义系列大模型全面适配,让用户在 5 分钟内开发基于通义大模型的 Java AI 应用。

Spring AI 是 Spring 官方社区项目,旨在简化 Java AI 应用程序开发,让 Java 开发者像使用 Spring 开发普通应用一样开发 AI 应用。


Spring Cloud Alibaba AI 以 Spring AI 为基础,并在此基础上提供阿里云通义系列大模型全面适配,让用户在 5 分钟内开发基于通义大模型的 Java AI 应用。

image.png

Spring AI x 通义千问 Demo 已上线至 sca.aliyun.com

Spring AI 简介


据 Spring AI 官网描述,该项目的灵感来自著名的 Python 项目,如 LangChain 和 LlamaIndex,但 Spring AI 并不是这些项目的直接复制。Spring AI 相信下一波 Generative AI 生成式应用程序将不仅面向 Python 开发人员,而且将在许多编程语言中广泛应用。


Spring AI 的核心是提供抽象,作为开发 Java AI 应用程序的基础,提供以下功能:


  • 提供多种大模型服务对接能力,包括业界大多数主流大模型服务等;
  • 支持灵活的 Prompt Template 和模型输出解析 Output Parsing 能力;
  • 支持多模态的生成式 AI 能力,如对话,文生图、文生语音等;
  • 提供通用的可移植的 API 以访问各类模型服务和 Embedding 服务,支持同步和流式调用,同时也支持传递特定模型的定制参数;
  • 支持 RAG 能力的基础组件,包括 DocumentLoader、TextSpillter、EmobeddingClient、VectorStore 等;
  • 支持 AI Spring Boot Starter 实现配置自动装配。


Spring Cloud Alibaba AI 简介


Spring Cloud Alibaba AI 目前基于 Spring AI 0.8.1[1]版本 API 完成通义系列大模型的接入。通义接入是基于阿里云灵积模型服务[2],灵积模型服务建立在“模型即服务”(Model-as-a-Service,MaaS)的理念基础之上,围绕 AI 各领域模型,通过标准化的API提供包括模型推理、模型微调训练在内的多种模型服务。


在当前最新版本中,Spring Cloud Alibaba AI 主要完成了几种常见生成式模型的适配,包括对话、文生图、文生语音等,开发者可以使用 Spring Cloud Alibaba AI 开发基于通义的聊天、图片或语音生成 AI 应用,框架还提供 OutParser、Prompt Template、Stuff 等实用能力。


以下是当前官方提供的 Spring Cloud Alibaba AI 应用开发示例,访问 sca.aliyun.com 可查看。


  • 聊天对话应用
  • 文生图应用
  • 文生语音应用
  • 模型输出解析OutputParser(实现从 String 到自动 POJO 映射)
  • 使用 Prompt Template
  • 让 AI 模型接入外部数据(Prompt Stuff)


体验第一个 Spring AI 应用开发


本项目演示如何使用 spring-cloud-starter-alibaba-ai 完成一个在线聊天 AI 应用,底层使用通义千问提供的模型服务。可在此查看完整示例源码[3]

开发聊天对话应用

1. 在项目 pom.xml 中加入 2023.0.1.0 版本 Spring Cloud Alibaba 依赖:


<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.alibaba.cloud</groupId>
      <artifactId>spring-cloud-alibaba-dependencies</artifactId>
      <version>2023.0.1.0</version>
      <type>pom</type>
      <scope>import</scope>
     </dependency>
   </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
      <groupId>com.alibaba.cloud</groupId>
      <artifactId>spring-cloud-starter-alibaba-ai</artifactId>
  </dependency>
</dependencies>


2. 在 application.yml 配置文件中加入以下配置:


spring:
  cloud:
    ai:
      tongyi:
        chat:
          options:
            # Replace the following key with a valid API-KEY.
            api-key: sk-a3d73b1709bf4a178c28ed7c8b3b5axx


3. 编写聊天服务实现类,由 Spring AI 自动注入 ChatClient、StreamingChatClient,ChatClient 屏蔽底层通义大模型交互细节。


@Service
public class TongYiSimpleServiceImpl extends AbstractTongYiServiceImpl {

  private final ChatClient chatClient;

  private final StreamingChatClient streamingChatClient;

  @Autowired
  public TongYiSimpleServiceImpl(ChatClient chatClient, StreamingChatClient streamingChatClient) {
    this.chatClient = chatClient;
    this.streamingChatClient = streamingChatClient;
  }
}


4. 提供具体聊天逻辑实现


@Service
public class TongYiSimpleServiceImpl extends AbstractTongYiServiceImpl {

  // ......

  @Override
  public String completion(String message) {

    Prompt prompt = new Prompt(new UserMessage(message));

    return chatClient.call(prompt).getResult().getOutput().getContent();
  }

  @Override
  public Map<String, String> streamCompletion(String message) {

    StringBuilder fullContent = new StringBuilder();

    streamingChatClient.stream(new Prompt(message))
        .flatMap(chatResponse -> Flux.fromIterable(chatResponse.getResults()))
        .map(content -> content.getOutput().getContent())
        .doOnNext(fullContent::append)
        .last()
        .map(lastContent -> Map.of(message, fullContent.toString()))
        .block();

    log.info(fullContent.toString());

    return Map.of(message, fullContent.toString());
  }

}


5. 编写 Spring 入口类并启动应用


@SpringBootApplication
public class TongYiApplication {
  public static void main(String[] args) {
    SpringApplication.run(TongYiApplication.class);
  }
}


至此,便完成了最简单的聊天 AI 应用开发,与普通的 Spring Boot 应用开发步骤完全一致!


验证应用效果

启动应用后,可通过如下两种方式验证应用效果。


方式一

浏览器地址栏输入:http://localhost:8080/ai/example


返回如下响应:


{
    "Tell me a joke": "Sure, here's a classic one for you:\n\nWhy was the math book sad?\n\nBecause it had too many problems.\n\nI hope that made you smile! If you're looking for more, just let me know."
}


方式二

进入 resources/static 目录下,使用浏览器打开 index.html 文件,输入问题,即可获得输出响应(确保 api-key 有效):

image.png

申请通义API-KEY

为使示例能够正常接入通义大模型,需要在阿里云开通 DashScope 灵积模型服务,申请有效的 API-KEY 并更新到应用配置文件。具体操作步骤可参见如下文档:https://help.aliyun.com/zh/dashscope/developer-reference/activate-dashscope-and-create-an-api-key


未来规划


当前版本 Spring Cloud Alibaba AI 主要完成了几种常见生成式模型适配,包括对话、文生图、文生语音等。接下来的版本中,我们将继续完成 VectorStore、Embedding、ETL Pipeline 等更多适配,简化 RAG 等更多 AI 应用开发场景。

image.png

请持续关注 https://sca.aliyun.com,了解最新进展。也欢迎通过钉钉扫描下方二维码加入社区钉群。(群号:64485010179

image.png

相关链接:

[1] Spring AI 0.8.1

https://docs.spring.io/spring-ai/reference/0.8-SNAPSHOT/index.html

[2] 灵积模型服务

https://help.aliyun.com/zh/dashscope/

[3] 完整示例源码

https://github.com/alibaba/spring-cloud-alibaba/tree/2023.x/spring-cloud-alibaba-examples/spring-cloud-ai-example/src/main/java/com/alibaba/cloud/ai/example/tongyi/service/impl/helloworld

相关文章
|
4月前
|
人工智能 Java Nacos
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
3624 75
|
4月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
5743 79
|
5月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
647 3
|
5月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
1953 134
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
4月前
|
人工智能 监控 Java
零代码改造 + 全链路追踪!Spring AI 最新可观测性详细解读
Spring AI Alibaba 通过集成 OpenTelemetry 实现可观测性,支持框架原生和无侵入探针两种方式。原生方案依赖 Micrometer 自动埋点,适用于快速接入;无侵入探针基于 LoongSuite 商业版,无需修改代码即可采集标准 OTLP 数据,解决了原生方案扩展性差、调用链易断链等问题。未来将开源无侵入探针方案,整合至 AgentScope Studio,并进一步增强多 Agent 场景下的观测能力。
2178 65
|
4月前
|
安全 前端开发 Java
《深入理解Spring》:现代Java开发的核心框架
Spring自2003年诞生以来,已成为Java企业级开发的基石,凭借IoC、AOP、声明式编程等核心特性,极大简化了开发复杂度。本系列将深入解析Spring框架核心原理及Spring Boot、Cloud、Security等生态组件,助力开发者构建高效、可扩展的应用体系。(238字)
|
5月前
|
人工智能 Java API
构建基于Java的AI智能体:使用LangChain4j与Spring AI实现RAG应用
当大模型需要处理私有、实时的数据时,检索增强生成(RAG)技术成为了核心解决方案。本文深入探讨如何在Java生态中构建具备RAG能力的AI智能体。我们将介绍新兴的Spring AI项目与成熟的LangChain4j框架,详细演示如何从零开始构建一个能够查询私有知识库的智能问答系统。内容涵盖文档加载与分块、向量数据库集成、语义检索以及与大模型的最终合成,并提供完整的代码实现,为Java开发者开启构建复杂AI智能体的大门。
2754 58
|
4月前
|
消息中间件 缓存 Java
Spring框架优化:提高Java应用的性能与适应性
以上方法均旨在综合考虑Java Spring 应该程序设计原则, 数据库交互, 编码实践和系统架构布局等多角度因素, 旨在达到高效稳定运转目标同时也易于未来扩展.
281 8
|
4月前
|
人工智能 监控 Java
Spring AI Alibaba实践|后台定时Agent
基于Spring AI Alibaba框架,可构建自主运行的AI Agent,突破传统Chat模式限制,支持定时任务、事件响应与人工协同,实现数据采集、分析到决策的自动化闭环,提升企业智能化效率。
Spring AI Alibaba实践|后台定时Agent
|
5月前
|
监控 Java 数据库
从零学 Dropwizard:手把手搭轻量 Java 微服务,告别 Spring 臃肿
Dropwizard 整合 Jetty、Jersey 等成熟组件,开箱即用,无需复杂配置。轻量高效,启动快,资源占用少,内置监控、健康检查与安全防护,搭配 Docker 部署便捷,是构建生产级 Java 微服务的极简利器。
484 3

热门文章

最新文章