R语言指数加权模型EWMA预测股市多变量波动率

简介: R语言指数加权模型EWMA预测股市多变量波动率

原文链接:http://tecdat.cn/?p=25872 


从广义上讲,复杂的模型可以实现很高的预测准确性点击文末“阅读原文”获取完整代码数据


但是您的客户需要快速理解。他们没有意愿或时间去处理任何太乏味的事情,即使模型可以稍微准确一些。简单性是商业中非常重要的模型选择标准。

在多元波动率估计中,最简单的方法是使用历史协方差矩阵。但这太简单了,我们已经知道波动性是随时间变化的。您经常看到从业者使用滚动标准差来模拟随时间变化的波动率。它可能不如其他最先进的方法准确, 但它实现起来非常简单,也很容易解释。

什么是滚动窗口估计。如果我们有一个包含 5 个观察值的向量并且我们使用 2 个窗口,那么用于估计的权重向量是 [0,0,0,0.5,0.5]。更进一步的做法是对更远的过去给予少一些权重,但要对最近的观察样本给予更大的权重,比如权重向量 [0.05, 0.1, 0.15, 0.3, 0.4]。


根据低波动率跟着低波动率走,高波动率跟着高波动率走(波动率聚类)的典型事实,这个想法完全适合于多变量波动率预测。请考虑以下情况。

(1)

其中 是协方差矩阵的当前估计,并且 是基于过去直到时间段 t-1 的协方差矩阵。我们使用最简单的估计,即历史协方差矩阵,但增加了一些权重( )到仅基于最近的观察估计的协方差矩阵。这真的很容易解释,几乎是一个行业标准。可以估计我们希望权重下降的速度,但您也可以根据一些先前的研究,将衰减参数估计为 0.94。

我绘制几个不同 lambda 值随时间变化的相关矩阵:

k <- 10 # 几年前
end<- format(Sys.Date(),"%Y-%m-%d")
start<-format(Sys.Date() - (k*365),"%Y-%m-%d")
dat0 = getSymbols
for (i in 1:l){
da0 = getSymbols(sym\[i\])
ret\[2:n,i\] 
}
EWMAplot
legend

您可以看到,如果您为最后一次观察样本分配 15% 的权重,您会得到一些不稳定的估计。仅 5% (lambda = 0.95) 的权重给出了更平滑的估计,但可能不太准确。


点击标题查阅往期内容


R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模


01

02

03

04


除了简单之外,另一个重要的优点是不需要关心可逆性,因为在每个时间点上,估计值只是两个有效的相关矩阵的加权平均数。还有,你可以将这种方法应用于任何金融工具,不管是流动的还是非流动的,这是它受欢迎的另一个原因。

EWMA <-
function {
## ###输入。
## factors N x K的数字因素数据。数据是类data.frame
## N是时间长度,K是因素的数量。  
## lambda 标量。指数衰减系数在0和1之间。
## return.cor 如果是TRUE则返回EWMA相关矩阵
##输出。  
covewma = array
covf = var(factors)  # 时间=0时的无条件方差为EWMA
mfas <- apply(factors,2, mean)
for (i in 2:t.factor) {
FF 
cov.f.ewma
}
}
if(return.cor) {
cewma 
for (i in 1:dim\[1\]) {
corewma= covr(coewm\[i, ,\])

这个函数不适合用于样本外的预测。原因是我们向样本协方差矩阵收缩,而协方差矩阵是基于全样本的,在样本结束前我们还不知道。在现实的设置中,我们只能使用到我们希望预测的那一点为止的信息。随后,我改变了原始函数,加入了一个额外的参数(用于估计协方差矩阵的初始窗口长度)。然后,初始协方差矩阵的取值只使用到预测时为止的信息,标准化也是如此。修改后的新函数如下

EWMAs <- function{
# 调整了样本外的协方差预测
## 输入。
##因素N x K数字因素数据。数据是类data.frame
## N是时间长度,K是因素的数量。  
## la指数衰减因子在0和1之间。
## retu 逻辑的,如果是TRUE则返回EWMA相关矩阵
##输出。  
coa = array(,c(t.cor,k.tor,k.aor))
fas <- apply
covf = var
co.ewa\[(wind-1),,\] = (1-lad)\*FF  + ada\*cov.f
for (i in wind : t.factor) {
covf = var# 到t的无条件方差。
FF = (fators\[i,\]- mctors) %*% t(factors\[i,\]- mfcrs)
coma\[i,,\] = (1-laa)\*FF  + laba\*coma\[(i-1),,\]
for (i in wn:dim) {
orma\[i, , \] = covr(owma\[i, ,\])



相关文章
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
2月前
|
数据采集
基于R语言的GD库实现地理探测器并自动将连续变量转为类别变量
【9月更文挑战第9天】在R语言中,可通过`gd`包实现地理探测器。首先,安装并加载`gd`包;其次,准备包含地理与因变量的数据框;然后,使用`cut`函数将连续变量转换为分类变量;最后,通过`gd`函数运行地理探测器,并打印结果以获取q值等统计信息。实际应用时需根据数据特点调整参数。
126 8
|
2月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
6月前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
6月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
21天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3

热门文章

最新文章