R语言LDA、CTM主题模型、RJAGS 吉布斯GIBBS采样文本挖掘分析论文摘要、通讯社数据

简介: R语言LDA、CTM主题模型、RJAGS 吉布斯GIBBS采样文本挖掘分析论文摘要、通讯社数据

全文链接:http://tecdat.cn/?p=29514


主题模型允许对文档中的术语频率发生进行概率建模。拟合模型可用于估计文档之间以及一组指定关键字之间的相似性,这些关键字使用称为主题的额外潜在变量。R 包主题模型提供了基于文本挖掘包 tm 中的数据结构拟合主题模型的基本基础结构。

关键词:吉布斯采样, R, 文本分析, 主题模型


1. 引言


在机器学习和自然语言处理中,主题模型是生成模型,它们为给定语料库中文档中的术语频率出现提供了概率框架。仅使用术语“频率”假定单词在文档中出现的顺序可以忽略不计。这个假设也被称为文档中单词的可交换性假设,这个假设导致了词袋模型。


2. 主题模型规范与估算


对于这两种模型(LDA 和 CTM),主题 k 的数量必须先验地固定下来。LDA 模型和 CTM 假设文档 w = (w1, . . , wN) 的以下生成过程,该文档包含来自由 V 个不同术语组成的词汇表中的 N 个单词,∈ 对于所有 i = 1, . . , N.

对于 LDA,生成模型由以下三个步骤组成。

步骤 1:术语“分布β由以下方式确定:

步骤 2:文档 w 的主题分布比例 θ 由下式确定

步骤3:对于N个单词中的每一个wi

(a) 选择一个主题 zi ∼ 多项式 (θ)。

(b) 从以主题 zi 为条件的多项式概率分布中选择一个词 wi:p(wi |子 , β)。

β是主题的术语分布,包含给定主题中单词出现的概率。


3. 应用:主要函数是LDA ()和CTM ()


包主题模型中用于拟合 LDA 和 CTM 模型的主要功能是 LDA() 和 CTM(),分别

LDA(x, k, method = "VEM", control = NULL, model = NULL, ...)

CTM(x, k, method = "VEM", control = NULL, model = NULL, ...)

这两个函数具有相同的参数。x 是具有非负整数计数条目的合适文档术语矩阵,通常是从包 tm 获得的“文档术语矩阵”。


4. 示例:JSS论文摘要


在统计软件杂志(JSS)的摘要集合中进行了演示。

R> JSS_papers\[, "description"\] <- sub(".*\\nAbstract:\\n", "",
+ unlist(JSS_papers\[, "description"\]))

为了结果的可重复性,我们仅使用截至2010-08-05发表的摘要,并省略摘要中包含非ASCII字符的摘要。

最终数据集包含 348 个文档。在分析之前,我们使用包tm将其转换为“语料库”。希腊字母,下标等摘要中的HTML标记使用包XML删除。

R> corpus <- Corpus(VectorSource(sapply(JSS_papers\[, "description"\],

文档集使用函数文档术语矩阵从包 tm 导出到文档术语矩阵。使用控制参数对术语进行词干处理,并删除非索引字、标点符号、数字和长度小于 3 的术语。

R> JSS_dtm <- DocumentTermMatrix(corpus,
R> dim(JSS_dtm)

包含此术语的文档上的平均术语频率-反向文档频率 (tf-idf) 用于选择词汇。

R> summary(col\_sums(JS\_dtm))
R> summary(tem_tidf)
R> summary(col\_sums(J\_dtm))

经过预处理后,我们有以下文档术语矩阵,其中包含减少的词汇量,我们可以使用它来适应主题m

R> dim(JSS_dtm)

在下文中,我们使用 (1) 具有估计α的 VEM、(2) 具有α固定的 VEM 和 (3) 具有 1000 次迭代的预烧的 Gibbs 采样以及记录 1000 次迭代的每 100 次迭代的 30 个主题的 LDA 模型。

在调查了性能后,我们将主题数量随意设置为30个,主题数量从2到200不等,使用10倍交叉验证。

为了比较拟合模型,我们首先研究拟合 VEM 的模型的α值,α估计的 VEM 和α固定的模型。

R> sapply(jss_TM

图 1:不同估计方法的所有文档分配到最可能主题的概率的直方图


点击标题查阅往期内容


【视频】文本挖掘:主题模型(LDA)及R语言实现分析游记数据


01

02

03

04



我们看到,如果估计α,则将其设置为远小于默认值的值。

熵度量还可用于指示四种拟合方法的主题分布有何不同。

值越高,表示主题分布分布在主题上越均匀。文档的估计主题和主题的估计术语可以使用便利函数主题()和术语()获得。每个文档最可能的主题由以下公式获得

R> Topic <- topics(jss_TM\[\["VEM"\]\], 1)

每个主题的五个最常用术语由下式获得:

如果文档的任何类别标签可用,则这些标签可用于验证拟合模型。

这些论文之间的相似性表现在以下事实中:大多数论文的主题与其最可能的主题相同。主题7的十个最有可能的术语由下式给出

显然,这个话题与特刊的一般主题有关。这表明拟合主题模型在不使用此信息的情况下成功地检测了同一特刊中论文之间的相似性。


5. 通讯社数据案例


在下文中,分析了1992年第一次文本检索会议(TREC-1)(Harman 1992)通讯社数据的子集。

R> dim(AssociatedPress)

它由2246个文档组成,词汇表已经被选中,只包含出现在超过5个文档中的单词。

该分析使用 10 倍交叉验证来评估模型的性能。

当折的值从 1, . . . 10 时,我们用三种不同的变体来估计模型。

主题数量从以下方面不等:

R> topics <- 10 * c(1:5, 10, 20)

对于α VEM,我们有:

对于固定α VEM:

图 2:拟合 VEM 模型的测试数据的困惑。每行对应于 10 倍交叉验证中的一个折叠。

对于 Gibbs 采样,我们使用 1000 的预烧,然后是 1000 次抽取,并返回所有抽取

+ model = train\[\[which.max(sapply, train, logLik)\]\],

+ control = list(estimate.beta = FALSE, burnin = 1000, thin = 100,

图 2 给出了使用 VEM 拟合的模型的测试数据的困惑度。对于这两种估计方法,建议将大约40个主题作为最佳方法。VEM估计α值在左侧的图3中给出。显然,这些值比用作默认值 50/k 的值小得多。同样,请注意,较小的α值表示文档上的主题分布大部分权重位于角落。这意味着文档仅包含少量主题。对于使用 Gibbs 抽样拟合的模型,还通过确定测试数据的困惑来执行模型选择。右边的图 3 表明,大约 20-40 个主题是最佳主题。

图 3:左图:使用 VEM 拟合的模型的估计α值。右图:使用吉布斯抽样拟合模型的测试数据的困惑度。每行对应于 10 倍交叉验证中的一个折叠

确定具有最小距离的最佳匹配,并相对于其八个最有可能的单词进行比较。

R> terms(AP$VEM, 8)\[,best_match\[1:4\]\]

这四个主题显然是关于同一主题的,并且由非常相似的单词组成。但是,主题之间的这种清晰对应关系仅存在于主题的一小部分中。图 4 中具有匹配主题的距离图像图也表明了这一点。根据图像,我们不会期望最差的四个匹配主题有很多共同点。通过检查每个主题的八个最重要的单词也可以看到这一点。


6. 扩展到新的拟合方法


包主题模型已经为 LDA 模型提供了两种不同的估计方法,为 CTM 提供了一种不同的估计方法。用户可以通过方法参数扩展方法并提供自己的拟合函数。在下文中,我们概述了如何使用包 rjags 来拟合 LDA 模型,使用具有不同实现的 Gibbs 采样。

图 4:解决方案的主题与 40 个 VEM 主题和 40 个 Gibbs 采样主题相匹配。

R> BUDEL <-
+ "model {
+ for (i in 1:length(W)) {
+ z\[i\] ~ dcat(theta\[D\[i\],\]);
+ W\[i\] ~ dcat(beta\[z\[i\],\]);
+ }

以下代码实现了一个新的方法函数,以使用带有包 rjags 的 Gibbs 采样来拟合 LDA 模型。在此用于拟合模型的函数中,未确定语料库中每个单词的对数似然以及最可能的主题成员身份,因此不是返回对象的一部分。

我们仅将新的拟合函数应用于通讯社数据的一小部分,并且仅执行 Gibbs 采样器的 20 次迭代,以限制所需的时间。所需的时间也与吉布斯采样器的LDA特定实现进行了比较。

R> terms(lda_rjags, 4)

从这个例子中可以看出,在包主题模型中添加新的估计方法需要编写一个合适的拟合函数。

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
22天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
69 3