Docker部署Xxl-Job分布式任务调度中心(超详细)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Docker部署Xxl-Job分布式任务调度中心(超详细)

前言

XXL-Job是一个开源的分布式任务调度中心,它提供了一个可视化的任务管理界面,可以方便地创建、编辑和监控任务。XXL-Job支持多种任务类型,包括简单的Java任务、Shell任务、Cron任务等。它还提供了任务执行日志、报警机制、任务依赖等功能,可以满足各种任务调度的需求。XXL-Job还支持集群部署,可以实现高可用和负载均衡。

部署

1.拉取xxl-job镜像

这里我们选取的镜像版本为2.4.0,可根据自己需求改动

docker pull xuxueli/xxl-job-admin:2.4.0

2.创建xxl-job的sql数据库

在xxl-job的源码中提供了需要的库的sql代码,直接复制执行即可

doc/db/tables_xxl_job.sql · 许雪里/xxl-job - 码云 - 开源中国 (gitee.com)

CREATE database if NOT EXISTS `xxl_job` default character set utf8mb4 collate utf8mb4_unicode_ci;
use `xxl_job`;
 
SET NAMES utf8mb4;
 
CREATE TABLE `xxl_job_info` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `job_group` int(11) NOT NULL COMMENT '执行器主键ID',
  `job_desc` varchar(255) NOT NULL,
  `add_time` datetime DEFAULT NULL,
  `update_time` datetime DEFAULT NULL,
  `author` varchar(64) DEFAULT NULL COMMENT '作者',
  `alarm_email` varchar(255) DEFAULT NULL COMMENT '报警邮件',
  `schedule_type` varchar(50) NOT NULL DEFAULT 'NONE' COMMENT '调度类型',
  `schedule_conf` varchar(128) DEFAULT NULL COMMENT '调度配置,值含义取决于调度类型',
  `misfire_strategy` varchar(50) NOT NULL DEFAULT 'DO_NOTHING' COMMENT '调度过期策略',
  `executor_route_strategy` varchar(50) DEFAULT NULL COMMENT '执行器路由策略',
  `executor_handler` varchar(255) DEFAULT NULL COMMENT '执行器任务handler',
  `executor_param` varchar(512) DEFAULT NULL COMMENT '执行器任务参数',
  `executor_block_strategy` varchar(50) DEFAULT NULL COMMENT '阻塞处理策略',
  `executor_timeout` int(11) NOT NULL DEFAULT '0' COMMENT '任务执行超时时间,单位秒',
  `executor_fail_retry_count` int(11) NOT NULL DEFAULT '0' COMMENT '失败重试次数',
  `glue_type` varchar(50) NOT NULL COMMENT 'GLUE类型',
  `glue_source` mediumtext COMMENT 'GLUE源代码',
  `glue_remark` varchar(128) DEFAULT NULL COMMENT 'GLUE备注',
  `glue_updatetime` datetime DEFAULT NULL COMMENT 'GLUE更新时间',
  `child_jobid` varchar(255) DEFAULT NULL COMMENT '子任务ID,多个逗号分隔',
  `trigger_status` tinyint(4) NOT NULL DEFAULT '0' COMMENT '调度状态:0-停止,1-运行',
  `trigger_last_time` bigint(13) NOT NULL DEFAULT '0' COMMENT '上次调度时间',
  `trigger_next_time` bigint(13) NOT NULL DEFAULT '0' COMMENT '下次调度时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
CREATE TABLE `xxl_job_log` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `job_group` int(11) NOT NULL COMMENT '执行器主键ID',
  `job_id` int(11) NOT NULL COMMENT '任务,主键ID',
  `executor_address` varchar(255) DEFAULT NULL COMMENT '执行器地址,本次执行的地址',
  `executor_handler` varchar(255) DEFAULT NULL COMMENT '执行器任务handler',
  `executor_param` varchar(512) DEFAULT NULL COMMENT '执行器任务参数',
  `executor_sharding_param` varchar(20) DEFAULT NULL COMMENT '执行器任务分片参数,格式如 1/2',
  `executor_fail_retry_count` int(11) NOT NULL DEFAULT '0' COMMENT '失败重试次数',
  `trigger_time` datetime DEFAULT NULL COMMENT '调度-时间',
  `trigger_code` int(11) NOT NULL COMMENT '调度-结果',
  `trigger_msg` text COMMENT '调度-日志',
  `handle_time` datetime DEFAULT NULL COMMENT '执行-时间',
  `handle_code` int(11) NOT NULL COMMENT '执行-状态',
  `handle_msg` text COMMENT '执行-日志',
  `alarm_status` tinyint(4) NOT NULL DEFAULT '0' COMMENT '告警状态:0-默认、1-无需告警、2-告警成功、3-告警失败',
  PRIMARY KEY (`id`),
  KEY `I_trigger_time` (`trigger_time`),
  KEY `I_handle_code` (`handle_code`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
CREATE TABLE `xxl_job_log_report` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `trigger_day` datetime DEFAULT NULL COMMENT '调度-时间',
  `running_count` int(11) NOT NULL DEFAULT '0' COMMENT '运行中-日志数量',
  `suc_count` int(11) NOT NULL DEFAULT '0' COMMENT '执行成功-日志数量',
  `fail_count` int(11) NOT NULL DEFAULT '0' COMMENT '执行失败-日志数量',
  `update_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `i_trigger_day` (`trigger_day`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
CREATE TABLE `xxl_job_logglue` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `job_id` int(11) NOT NULL COMMENT '任务,主键ID',
  `glue_type` varchar(50) DEFAULT NULL COMMENT 'GLUE类型',
  `glue_source` mediumtext COMMENT 'GLUE源代码',
  `glue_remark` varchar(128) NOT NULL COMMENT 'GLUE备注',
  `add_time` datetime DEFAULT NULL,
  `update_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
CREATE TABLE `xxl_job_registry` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `registry_group` varchar(50) NOT NULL,
  `registry_key` varchar(255) NOT NULL,
  `registry_value` varchar(255) NOT NULL,
  `update_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `i_g_k_v` (`registry_group`,`registry_key`,`registry_value`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
CREATE TABLE `xxl_job_group` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `app_name` varchar(64) NOT NULL COMMENT '执行器AppName',
  `title` varchar(12) NOT NULL COMMENT '执行器名称',
  `address_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '执行器地址类型:0=自动注册、1=手动录入',
  `address_list` text COMMENT '执行器地址列表,多地址逗号分隔',
  `update_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
CREATE TABLE `xxl_job_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `username` varchar(50) NOT NULL COMMENT '账号',
  `password` varchar(50) NOT NULL COMMENT '密码',
  `role` tinyint(4) NOT NULL COMMENT '角色:0-普通用户、1-管理员',
  `permission` varchar(255) DEFAULT NULL COMMENT '权限:执行器ID列表,多个逗号分割',
  PRIMARY KEY (`id`),
  UNIQUE KEY `i_username` (`username`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
CREATE TABLE `xxl_job_lock` (
  `lock_name` varchar(50) NOT NULL COMMENT '锁名称',
  PRIMARY KEY (`lock_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
 
INSERT INTO `xxl_job_group`(`id`, `app_name`, `title`, `address_type`, `address_list`, `update_time`) VALUES (1, 'xxl-job-executor-sample', '示例执行器', 0, NULL, '2018-11-03 22:21:31' );
INSERT INTO `xxl_job_info`(`id`, `job_group`, `job_desc`, `add_time`, `update_time`, `author`, `alarm_email`, `schedule_type`, `schedule_conf`, `misfire_strategy`, `executor_route_strategy`, `executor_handler`, `executor_param`, `executor_block_strategy`, `executor_timeout`, `executor_fail_retry_count`, `glue_type`, `glue_source`, `glue_remark`, `glue_updatetime`, `child_jobid`) VALUES (1, 1, '测试任务1', '2018-11-03 22:21:31', '2018-11-03 22:21:31', 'XXL', '', 'CRON', '0 0 0 * * ? *', 'DO_NOTHING', 'FIRST', 'demoJobHandler', '', 'SERIAL_EXECUTION', 0, 0, 'BEAN', '', 'GLUE代码初始化', '2018-11-03 22:21:31', '');
INSERT INTO `xxl_job_user`(`id`, `username`, `password`, `role`, `permission`) VALUES (1, 'admin', 'e10adc3949ba59abbe56e057f20f883e', 1, NULL);
INSERT INTO `xxl_job_lock` ( `lock_name`) VALUES ( 'schedule_lock');
 
commit;

3.启动镜像

docker run -di -e PARAMS="--spring.datasource.url=jdbc:mysql://192.168.1.29:3306/xxl_job?Unicode=true&characterEncoding=UTF-8 --spring.datasource.username=root --spring.datasource.password=pzy123 --xxl.job.accessToken=pingzhuyan.test" \
-p 9001:8080 \
-v /usr/local/src/docker/xxl-job:/data/applogs \
--name xxl-job \
--privileged=true \
xuxueli/xxl-job-admin:2.4.0

--privileged=true 给予容器Root权限

-v 目录挂载   :左边为宿主机目录,右边为容器内目录

以下几个配置非常重要,请根据自己情况修改

–xxl.job.accessToken=pingzhuyan.test  这行配置指定accessToken,当你在程序中引入xxl-job时,需要用到accessToken

--spring.datasource.username=root xxl-job web界面的登录账户

--spring.datasource.password=pzy123 web界面的登录密码

--spring.datasource.url Sql数据库的url

4.访问web管理界面

http://192.168.1.29:9001/xxl-job-admin

总结

本文详细的讲解了如何使用Docker部署xxl-job分布式任务调度服务,关于xxl-job的具体使用与操作,后面会再出一期教程专门讲解。


感谢观看~


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
10天前
|
消息中间件 数据可视化 Kafka
docker arm架构部署kafka要点
本内容介绍了基于 Docker 的容器化解决方案,包含以下部分: 1. **Docker 容器管理**:通过 Portainer 可视化管理工具实现对主节点和代理节点的统一管理。 2. **Kafka 可视化工具**:部署 Kafka-UI 以图形化方式监控和管理 Kafka 集群,支持动态配置功能, 3. **Kafka 安装与配置**:基于 Bitnami Kafka 镜像,提供完整的 Kafka 集群配置示例,涵盖 KRaft 模式、性能调优参数及数据持久化设置,适用于高可用生产环境。 以上方案适合 ARM64 架构,为用户提供了一站式的容器化管理和消息队列解决方案。
|
1月前
|
Ubuntu 安全 Docker
Ubuntu下部署及操作Docker技巧
以上就是在Ubuntu下部署及操作Docker的具体步骤。但这只是冰山一角,Docker的魅力远不仅如此。你可以将其视为存放各种工具的小箱子,随时随地取用,极大地提升工作效率。你也可以私人订制,适应不同的开发环境,就像一个拥有各种口味冰淇淋的冰箱,满足各种各样的需求。好了,现在你已经掌握了基本的Docker运用技巧,快去尝试使用吧!记住,沉浸在探索中,你会找到无尽的乐趣和满满的收获。
103 23
|
1月前
|
SQL 数据可视化 网络安全
YashanDB分布式可视化部署
本文介绍YashanDB的分布式部署流程,涵盖服务端安装、数据库基本信息与服务器配置、节点信息设置、建库参数调整、环境变量配置及安装结果检查等步骤。通过可视化Web界面操作,详细说明了各环节配置方法和注意事项,确保用户顺利完成数据库集群的搭建与初始化设置。适用于需要分布式数据库部署的场景,提供全面的操作指导。
YashanDB分布式可视化部署
|
2月前
|
安全 API 算法框架/工具
大模型文件Docker镜像化部署技术详解
大模型文件Docker镜像化部署技术详解
271 2
|
2月前
|
JSON 运维 Ubuntu
在Docker上部署Ollama+AnythingLLM完成本地LLM Agent部署
通过以上步骤,您可以成功在Docker上部署Ollama和AnythingLLM,实现本地LLM Agent的功能。在部署过程中,确保环境和配置正确,以避免不必要的问题。希望本文能够帮助您顺利完成部署,并在本地环境中高效地使用LLM模型。
812 8
|
2月前
|
Docker Python 容器
Docker——阿里云服务器使用Docker部署python项目全程小记
本文记录了我在阿里云服务器上使用Docker部署python项目(flask为例)的全过程,在这里记录和分享一下,希望可以给大家提供一些参考。
241 1
|
1月前
|
存储 SQL 关系型数据库
docker部署n9e开源版本7.4.0
n9e开源版本7.4.0
67 0
|
18天前
|
关系型数据库 MySQL Docker
|
28天前
|
Ubuntu Linux Docker
Docker容器的实战讲解
这只是Docker的冰山一角,但是我希望这个简单的例子能帮助你理解Docker的基本概念和使用方法。Docker是一个强大的工具,它可以帮助你更有效地开发、部署和运行应用。
101 27
|
2月前
|
Ubuntu 关系型数据库 MySQL
容器技术实践:在Ubuntu上使用Docker安装MySQL的步骤。
通过以上的操作,你已经步入了Docker和MySQL的世界,享受了容器技术给你带来的便利。这个旅程中你可能会遇到各种挑战,但是只要你沿着我们划定的路线行进,你就一定可以达到目的地。这就是Ubuntu、Docker和MySQL的灵魂所在,它们为你开辟了一条通往新探索的道路,带你亲身感受到了技术的力量。欢迎在Ubuntu的广阔大海中探索,用Docker技术引领你的航行,随时准备感受新技术带来的震撼和乐趣。
125 16