【AI大模型应用开发】【LangChain系列】实战案例6:利用大模型进行文本总结的方法探索,文本Token超限怎么办?

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】实战案例6:利用大模型进行文本总结的方法探索,文本Token超限怎么办?
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


假设有一组文档(PDF、Notion页面、客户问题等),你想要总结内容。可以利用大模型来帮你。今天来系统看下利用大模型来对文本进行总结的方法,以LangChain的使用为例。

参考:https://python.langchain.com/docs/use_cases/summarization

0. 方法概述

在利用大模型总结文本的过程中,最主要的工作是如何将文档内容传递给大模型。目前有两种常见的方法:

  1. Stuff方法:简单地将所有文档“填充”到单个提示中。这种方法的主要优点是简单,但缺点是当文档很长或数量很多时,可能会超出模型的上下文窗口限制,导致信息丢失或模型性能下降。
  2. Map-reduce方法:这种方法分为两步。首先,在“map”步骤中,单独对每个文档进行摘要。然后,在“reduce”步骤中,将这些摘要合并成一个最终摘要。这种方法的主要优点是它可以处理大量或长文档,因为它在合并之前先对它们进行了压缩。但是,这种方法可能需要额外的逻辑来确保在“reduce”步骤中生成的最终摘要是有意义和连贯的。

1. 实操练习

1.1 快速开始

1.1.1 代码示例

from langchain.chains.summarize import load_summarize_chain
from langchain_community.document_loaders import WebBaseLoader
from langchain_openai import ChatOpenAI
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
docs = loader.load()
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-1106")
chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.run(docs)
print(result)

代码示例中,使用了 LangChain 的 load_summarize_chain 来总结文本,chain_type="stuff" 表明采用 Stuff 方式。后面会给大家展示load_summarize_chain的部分实现。

1.1.2 运行一下

运行结果如下:

1.2 Stuff方法

这种方法就是直接将全部文本塞给大模型,让大模型直接总结。

1.2.1 StuffDocumentsChain

在上面的示例代码中,我们使用 load_summarize_chain 时,传入的 chain_type="stuff" ,其实底层用的是 LangChain 中的 StuffDocumentsChain

看下直接 StuffDocumentsChain 的使用示例:

from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
# Define prompt
prompt_template = """Write a concise summary of the following:
"{text}"
CONCISE SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
# Define LLM chain
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k")
llm_chain = LLMChain(llm=llm, prompt=prompt)
# Define StuffDocumentsChain
stuff_chain = StuffDocumentsChain(llm_chain=llm_chain, document_variable_name="text")
docs = loader.load()
print(stuff_chain.run(docs))

Prompt很简单,一眼就能看出其工作原理,它就是将docs全部扔给了大模型,让大模型给出一个简要的总结:

prompt_template = """Write a concise summary of the following:
"{text}"
CONCISE SUMMARY:"""

1.3 Map-Reduce方法

首先使用LLMChain将每个文档映射到一个单独的摘要。然后,使用ReduceDocumentsChain将这些摘要合并为一个全局摘要。

1.3.1 代码示例

1.3.1.1 文本分块
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=1000, chunk_overlap=0
)
split_docs = text_splitter.split_documents(docs)
1.3.1.2 对分块文本的总结Chain
# Map
map_template = """The following is a set of documents
{docs}
Based on this list of docs, please identify the main themes 
Helpful Answer:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=llm, prompt=map_prompt)

重点看Prompt,给定一个文档列表,根据这个文档列表,识别出主题思想。

来看下其执行的结果(输入分割后的一段文本,输出这段文本的主题思想。每段文本都调用一次大模型,执行一次该操作,所以,注意你的API KEY的次数消耗…):

1.3.1.3 ReduceDocumentsChain

有了上面分块的总结,下面的步骤就是根据分块总结合并成一条完整的总结。在LangChain中可以使用 ReduceDocumentsChain 类来实现此步骤。

# Reduce
reduce_template = """The following is set of summaries:
{docs}
Take these and distill it into a final, consolidated summary of the main themes. 
Helpful Answer:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
# Run chain
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt, verbose=True)
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
    llm_chain=reduce_chain, document_variable_name="docs", verbose=True
)
# Combines and iteratively reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
    # This is final chain that is called.
    combine_documents_chain=combine_documents_chain,
    # If documents exceed context for `StuffDocumentsChain`
    collapse_documents_chain=combine_documents_chain,
    # The maximum number of tokens to group documents into.
    token_max=4000,
    verbose=True
)

从代码中可以看到,ReduceDocumentsChain 设置了4个参数,我们分别来解释下。

  • combine_documents_chain:这是最终执行总结的Chain。它的值为 combine_documents_chain。而 combine_documents_chain 定义为一个 StuffDocumentsChain 类型的Chain,也就是简单地将前面分块总结的内容塞给大模型,让它根据分块总结再汇总总结一次。
  • collapse_documents_chain:这个Chain的作用,是来处理塞给大模型的Token超限的情况。如果文本特别多,分块特别多,那分块总结出来的东西也会非常多。单纯的将分块总结内容合并在一起,还是很有可能超过大模型上下文窗口限制。这个Chain,会按设置的最大Token数将内容再次拆分,然后再利用 StuffDocumentsChain 进行分块总结,直到最终各分块总结合并起来能一次塞给大模型才停止。

这是个递归分割总结的过程,注意Token或者调用次数的消耗,都是钱啊…

  • token_max:最大Token数,超过这个Token数执行上面的collapse_documents_chain
  • verbose:开详细日志

来直观感受下它的运行(合并分块总结内容作为输入,输出最终总结结果):

本例中分块总结文本合并后没有超限,所以没用到 collapse_documents_chain

1.3.1.4 Map-Reduce组合Chain: MapReduceDocumentsChain
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
    # Map chain
    llm_chain=map_chain,
    # Reduce chain
    reduce_documents_chain=reduce_documents_chain,
    # The variable name in the llm_chain to put the documents in
    document_variable_name="docs",
    # Return the results of the map steps in the output
    return_intermediate_steps=False,
    verbose=True
)

1.3.2 运行及结果

print(map_reduce_chain.run(split_docs))

2. 部分源码

(1)ReduceDocumentsChain 中,如果Token超限的处理:collapse_documents_chain,直接一个 while 循环压缩Token数。

(2)load_summarize_chain 的封装,在1.1中我们使用了 chain_type = "stuff",它其实也可以使用 “map_reduce” 或 “refine”。

如果chain_type设置为map_reduce,看它的源码,跟我们1.3节中的代码几乎一样。load_summarize_chain 就是对这几种方法的高层封装!

def _load_map_reduce_chain(
    llm: BaseLanguageModel,
    map_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
    combine_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
    combine_document_variable_name: str = "text",
    map_reduce_document_variable_name: str = "text",
    collapse_prompt: Optional[BasePromptTemplate] = None,
    reduce_llm: Optional[BaseLanguageModel] = None,
    collapse_llm: Optional[BaseLanguageModel] = None,
    verbose: Optional[bool] = None,
    token_max: int = 3000,
    callbacks: Callbacks = None,
    *,
    collapse_max_retries: Optional[int] = None,
    **kwargs: Any,
) -> MapReduceDocumentsChain:
    map_chain = LLMChain(
        llm=llm, prompt=map_prompt, verbose=verbose, callbacks=callbacks
    )
    _reduce_llm = reduce_llm or llm
    reduce_chain = LLMChain(
        llm=_reduce_llm, prompt=combine_prompt, verbose=verbose, callbacks=callbacks
    )
    # TODO: document prompt
    combine_documents_chain = StuffDocumentsChain(
        llm_chain=reduce_chain,
        document_variable_name=combine_document_variable_name,
        verbose=verbose,
        callbacks=callbacks,
    )
    if collapse_prompt is None:
        collapse_chain = None
        if collapse_llm is not None:
            raise ValueError(
                "collapse_llm provided, but collapse_prompt was not: please "
                "provide one or stop providing collapse_llm."
            )
    else:
        _collapse_llm = collapse_llm or llm
        collapse_chain = StuffDocumentsChain(
            llm_chain=LLMChain(
                llm=_collapse_llm,
                prompt=collapse_prompt,
                verbose=verbose,
                callbacks=callbacks,
            ),
            document_variable_name=combine_document_variable_name,
        )
    reduce_documents_chain = ReduceDocumentsChain(
        combine_documents_chain=combine_documents_chain,
        collapse_documents_chain=collapse_chain,
        token_max=token_max,
        verbose=verbose,
        callbacks=callbacks,
        collapse_max_retries=collapse_max_retries,
    )
    return MapReduceDocumentsChain(
        llm_chain=map_chain,
        reduce_documents_chain=reduce_documents_chain,
        document_variable_name=map_reduce_document_variable_name,
        verbose=verbose,
        callbacks=callbacks,
        **kwargs,
    )

3. 总结

本文我们学习和实践了利用 LangChain 进行文本总结的两种方法,知道了其实现原理,所以,我们应该不用 LangChain的这些封装也可以自己实现一套文档总结流程。

其实,LangChain 还有其它的文档总结的Chain,例如 RefineDocumentsChain 和 AnalyzeDocumentsChain,大体原理与本文介绍的两种方式都差不多,主要是封装的差异,感兴趣的也可以去试试。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
3月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
683 2
|
3月前
|
存储 人工智能 搜索推荐
解锁AI新境界:LangChain+RAG实战秘籍,让你的企业决策更智能,引领商业未来新潮流!
【10月更文挑战第4天】本文通过详细的实战演练,指导读者如何在LangChain框架中集成检索增强生成(RAG)技术,以提升大型语言模型的准确性与可靠性。RAG通过整合外部知识源,已在生成式AI领域展现出巨大潜力。文中提供了从数据加载到创建检索器的完整步骤,并探讨了RAG在企业问答系统、决策支持及客户服务中的应用。通过构建知识库、选择合适的嵌入模型及持续优化系统,企业可以充分利用现有数据,实现高效的商业落地。
134 6
|
3月前
|
机器学习/深度学习 人工智能 开发框架
解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!
【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。
225 14
|
3月前
|
人工智能 前端开发 JavaScript
前端大模型入门(二):掌握langchain的核心Runnable接口
Langchain.js 是 Langchain 框架的 JavaScript 版本,专为前端和后端 JavaScript 环境设计。最新 v0.3 版本引入了强大的 Runnable 接口,支持灵活的执行方式和异步操作,方便与不同模型和逻辑集成。本文将详细介绍 Runnable 接口,并通过实现自定义 Runnable 来帮助前端人员快速上手。
|
3月前
|
存储 人工智能 搜索推荐
揭秘LangChain+RAG如何重塑行业未来?保姆级实战演练,解锁大模型在各领域应用场景的神秘面纱!
【10月更文挑战第4天】随着AI技术的发展,大型语言模型在各行各业的应用愈发广泛,检索增强生成(RAG)技术成为推动企业智能化转型的关键。本文通过实战演练,展示了如何在LangChain框架内实施RAG技术,涵盖金融(智能风控与投资决策)、医疗(辅助诊断与病历分析)及教育(个性化学习推荐与智能答疑)三大领域。通过具体示例和部署方案,如整合金融数据、医疗信息以及学生学习资料,并利用RAG技术生成精准报告、诊断建议及个性化学习计划,为企业提供了切实可行的智能化解决方案。
107 5
|
8月前
|
Shell Android开发
Android系统 adb shell push/pull 禁止特定文件
Android系统 adb shell push/pull 禁止特定文件
630 1
|
8月前
|
Android开发 Python
Python封装ADB获取Android设备wifi地址的方法
Python封装ADB获取Android设备wifi地址的方法
175 0
|
开发工具 Android开发
Mac 安卓(Android) 配置adb路径
Mac 安卓(Android) 配置adb路径
902 0
|
5月前
|
Shell Linux 开发工具
"开发者的救星:揭秘如何用adb神器征服Android设备,开启高效调试之旅!"
【8月更文挑战第20天】Android Debug Bridge (adb) 是 Android 开发者必备工具,用于实现计算机与 Android 设备间通讯,执行调试及命令操作。adb 提供了丰富的命令行接口,覆盖从基础设备管理到复杂系统操作的需求。本文详细介绍 adb 的安装配置流程,并列举实用命令示例,包括设备连接管理、应用安装调试、文件系统访问等基础功能,以及端口转发、日志查看等高级技巧。此外,还提供了常见问题的故障排除指南,帮助开发者快速解决问题。掌握 adb 将极大提升 Android 开发效率,助力项目顺利推进。
130 0
|
8月前
|
Shell Android开发
ADB更改Android设备屏幕显示方向
ADB更改Android设备屏幕显示方向
398 5