解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!

简介: 【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。

基于LangChain 进行保姆级RAG实战演练:大模型发展趋势和红利期把握

随着人工智能技术的不断进步,大型语言模型(LLM)在各个领域的应用日益广泛。而检索增强生成(RAG)技术,作为提升LLM性能的重要手段,正逐渐受到业界的广泛关注。本文将通过对比和对比的形式,详细探讨RAG技术的发展趋势,并结合LangChain框架进行保姆级实战演练,帮助读者把握大模型的红利期。

首先,我们来看RAG技术的发展趋势。与传统LLM相比,RAG技术通过引入检索机制,能够更有效地利用外部知识库,提升模型的生成质量和准确性。这一特点使得RAG在问答系统、文本生成、对话系统等应用场景中具有显著优势。

一、RAG技术的优势与挑战

优势:
知识丰富性:RAG能够整合多源信息,生成更丰富、更准确的回答。
上下文理解:通过检索机制,RAG能够更好地理解上下文,生成更连贯的文本。
可解释性:RAG的生成过程相对透明,有助于提升用户对模型输出的信任度。
挑战:
检索效率:如何快速、准确地从海量数据中检索到相关信息,是RAG面临的一大挑战。
模型融合:如何将RAG与微调(fine-tuning)等其他技术有效结合,提升模型性能,也是当前研究的热点。
二、LangChain框架下的RAG实战演练

接下来,我们将通过LangChain框架进行RAG技术的实战演练。LangChain是一个开源的AI开发框架,它提供了丰富的工具和组件,帮助开发者构建高效、可扩展的AI应用。

示例代码:

python

安装必要的库

!pip install langchain transformers

加载数据

from langchain.document_loaders import TextLoader
loader = TextLoader("data/knowledge_base.txt")
docs = loader.load()

分割文档

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=500)
chunks = text_splitter.split_documents(docs)

向量化文档

from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()

构建向量数据库

from langchain.vectorstores import FAISS
db = FAISS.from_documents(chunks, embeddings)

创建检索器

retriever = db.as_retriever()

定义RAG链

from langchain.chains import RetrievalQA
from langchain.prompts import ChatPromptTemplate

template = "请根据以下信息回答关于{question}的问题:{context}"
prompt = ChatPromptTemplate.from_template(template)

rag_chain = RetrievalQA.from_llm(llm="openai-davinci-003", retriever=retriever, prompt=prompt)

示例查询

query = "请解释什么是深度学习?"
answer = rag_chain.run(query)
print(answer)
在上述代码中,我们首先加载了一个知识库文件,并将其分割成较小的文本块以便进行向量化。然后,我们使用OpenAI的嵌入模型将文本块向量化,并构建了一个FAISS向量数据库。接着,我们创建了一个检索器,并将其与RAG链结合使用。最后,我们通过一个示例查询来验证RAG链的性能。

三、大模型的红利期把握

随着RAG技术的不断发展,大型语言模型的应用场景将越来越广泛。从问答系统到对话系统,从文本生成到内容推荐,RAG技术都有望发挥重要作用。因此,对于希望把握大模型红利期的企业和个人来说,掌握RAG技术无疑是一个明智的选择。

然而,值得注意的是,RAG技术的发展仍面临诸多挑战。如何提升检索效率、如何优化模型融合策略、如何确保生成内容的准确性和可解释性等,都是当前研究的重点。因此,在把握红利期的同时,我们也应持续关注RAG技术的最新进展,以便及时调整和优化我们的应用策略。

综上所述,基于LangChain的RAG实战演练不仅能够帮助我们深入了解RAG技术的原理和实现方法,还能够为我们把握大模型的红利期提供有力支持。希望本文能够为读者提供有益的参考和启示。

相关文章
|
26天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
3天前
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
332 14
|
18天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
6天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
20天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
23天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2586 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
5天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
178 2
|
3天前
|
编译器 C#
C#多态概述:通过继承实现的不同对象调用相同的方法,表现出不同的行为
C#多态概述:通过继承实现的不同对象调用相同的方法,表现出不同的行为
104 65
|
6天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
295 2
|
22天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1580 16
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码