R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-1
https://developer.aliyun.com/article/1488197
模型预测
通常您会希望使用估计模型来随后预测条件方差。用于此目的的函数是 forecast
函数。该应用程序相当简单:
hforecast(ugfit
正如你所看到的,我们已经对未来十天进行了预测,包括预期收益 ( Series
) 和条件波动率(条件方差的平方根)。您可以提取条件波动率预测如下:
forecast$sigmaFor plot
请注意,波动率是条件方差的平方根。
为了将这些预测放在上下文中,让我们将它们与估计中使用的最后 50 个观察值一起显示。
(tail(ug_var,20) ) # 得到最后20个观察值 tail(ug_res2,20 )) # 得到最后的20个观测值
您可以看到条件方差的预测是如何从上次估计的条件方差中得出的。事实上,它从那里慢慢地向无条件方差值递减。
多元 GARCH 模型
通常,您需要对波动性进行建模。这可以通过单变量 GARCH 模型的多变量版本来完成。估计多变量 GARCH 模型比单变量 GARCH 模型要困难得多,但幸运的是,已经开发了处理大多数这些问题的程序。
在这里,我们来估计 BP、Google/Alphabet 和 IBM 股票收益率的多元波动率模型。
在这里,我们坚持使用动态条件相关 (DCC) 模型。在估计 DCC 模型时,基本上是估计单个 GARCH 类型模型。然后将这些用于标准化各个残差。作为第二步,必须指定这些标准化残差的相关动态。
模型设置
在这里,我们假设我们对三种资产中的每一种都使用相同的单变量波动率模型。
# DCC (MVN) u.n = multispec
这个命令有什么作用?它指定了一个 AR(1)-GARCH(1,1) 模型。将这个模型复制了 3 次(因为我们拥有三种股票,IBM、Google/Alphabet 和 BP)。
我们现在使用命令估计
结果保存在 multf
其中,您可以 multf
在命令窗口中键入以查看这三个模型的估计参数。但是我们将在这里继续指定 DCC 模型。
spec
模型估计
现在我们可以使用该 fit
函数来估计模型了。
fit1 =fit(spec1)
当您估计像 DCC 模型这样的多元波动率模型时,您通常对估计的协方差或相关矩阵感兴趣。毕竟,这些模型的核心是允许股票之间的相关性随时间变化。因此,我们现在将学习如何提取这些。
# 获取基于模型的时间变化协方差(阵列)和相关矩阵 rcov(fit1) # 提取协方差矩阵 rcor(fit1) # 提取相关矩阵
要了解我们手头的数据,我们可以看一下维度:
我们得到三个输出,告诉我们我们有一个三维对象。前两个维度各有 3 个元素(想想一个 3×3 相关矩阵),然后是第三个维度,有 3834个元素。这告诉我们 cor1
存储了 3834(3×3) 个相关矩阵,一个用于每天的数据。
让我们看看最后一天的相关矩阵,第 3834天;
因此,假设我们要绘制 Google 和 BP 之间的时变相关性,即最后一天的 0.1924。在我们的收益矩阵中, rX
BP 是第二个资产,而 Google 是第三个。因此,在任何特定的相关矩阵中,我们都需要第 2 行和第 3 列中的元素。
cor1\[2,1,\] # 将最后一个维度留空意味着我们需要所有元素 as.xts(c G) # 采用xts的时间序列格式--对绘图很有用
现在我们绘制这个。
如您所见,随着时间的推移存在显着变化,相关性通常在 0.2 和 0.5 之间变化。
让我们绘制三种资产之间的所有三种相关性。
预测
通常您会希望使用您的估计模型来生成协方差或相关矩阵的预测
相关性的实际预测可以通过
mforecast$R # 用H来预测协方差
检查结构时 Rf
您意识到该对象 Rf
是一个包含一个元素的列表。事实证明,这个列表项是一个 3 维矩阵/数组,其中包含 3×3 相关矩阵的 10 个预测。例如,如果我们想提取 IBM(第一项资产)和 BP(第二项资产)之间相关性的 10 个预测,我们必须按以下方式进行:
Rf\[\[1\]\]\[1,2,\] # IBM和BP之间的相关预测值 Rf\[\[1\]\]\[1,3,\] # IBM和谷歌之间的相关预测 Rf\[\[1\]\]\[2,3,\] # BP和Google之间的相关性预测
至于单变量波动性模型,让我们将预测与相关性的最后样本内估计一起显示。
# 这将创建一个有3个窗口的框架,由图画来填充 c(tail(cor1\[1,2,\],20),rep(NA,10)) # 得到最后20个相关观测值 c(rep(NA,20),corf_IB) # 得到10个预测值 plot c(tail(cor1\[1,3,\],20),rep(NA,10)) # 得到最后20个相关观测值 c(rep(NA,20),corf_IG) # 得到10个预测值 c(tail(cor1\[2,3,\],20),rep(NA,10)) # 获得最后20个相关观测值 c(rep(NA,20),corf_BG) # 得到10个预测值