什么是 NLP (自然语言处理)?

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: NLP 的全称是 Natural Language Processing,翻译成中文称作:自然语言处理。它是计算机和人工智能的一个重要领域。顾名思义,该领域研究如何处理自然语言。

NLP(自然语言处理)到底是做什么?

NLP 的全称是 Natural Language Processing,翻译成中文称作:自然语言处理。它是计算机和人工智能的一个重要领域。顾名思义,该领域研究如何处理自然语言。

自然语言就是我们人类市场交流所使用的语音和字符系统。就目前而言,NLP所研究的对象,以字符系统——也就是我们通常说的“文字”——为主。

为什么要处理自然语言?

为什么要处理文字呢?因为有需求啊!

我们用文字描述事物、经历和思想。形成的文献资料,除了被阅读,往往还需要进行很多其他操作。

比如,被翻译成其他语种;对内容进行摘要;在其中查找某个问题的答案;或者,了解其中提到了哪些人事物,以及它们之间的关系如何,等等。

虽然所有这些需求,都可以通过人工阅读文献来解决,但“浩如烟海”的文献量导致人工文字处理的产能严重不足。

NLP 的发展历程

上世纪 40 年代计算机被发明,用机器而非人力来处理信息成为可能。早在 1950 年代,自然语言处理就已经成为了计算机科学的一个研究领域。

不过一直到 1980 年代,NLP 系统是以一套复杂的人工订制规则为基础,计算机只是机械地执行这些规则,或者做一些诸如字符匹配,词频统计之类的简单计算。

1980年代末期,机器学习的崛起为 NLP 引入了新的思路。刚性的文字处理人工规则日益被柔性的、以概率为基础的统计模型所替代。

近些年来,随着深度学习的发展,各类神经网络也被引入 NLP 领域,成为了解决问题的技术。

这里要注意了:自然语言处理(NLP)指以计算机为工具解决一系列现实中和自然语言相关的问题,机器学习、深度学习是解决这些问题的具体手段。 当我们关注 NLP 这一领域时,要分清本末,要做的事情是本,做事的方式方法是末。如果神经网络能够解决我们的问题,我们当然应该采用,但并不是只要去解决问题,就一定要用神经网络。

常见的 NLP 任务

NLP 要处理的问题纷繁复杂,而且每一个问题都要结合相应场景和具体需求才好讨论。

不过这些问题也有相当多的共性,基于这些共性,我们将千奇百怪的待解决 NLP 问题抽象为若干任务。

例如:分词、词嵌入、新词发现、拼写提示、词性标注、实体抽取、关系抽取、事件抽取、实体消歧、公指消解、文本分类、机器翻译、自动摘要、阅读理解等等,都是常见的 NLP 任务。

从 NLP 任务到技术实现

针对这些任务,NLP 研究人员探索出了很多方法,这些方法又对应于不同类型的技术。

在工作中,当我们遇到问题的时候,往往需要先将其对应到一个或多个任务,再在该任务的常用实现方法中选取一种适合我们使用的来执行任务。

【举个例子】:我们要基于若干文献构建一个知识图谱,知识图谱的两大核心要素是实体和关系,那么当然首先我们面临的任务就是从这些文献中抽取实体和关系。

实体抽取是一项非常常见的 NLP 任务,实现它的方法有多种,大体而言分为两个方向:

i)基于实体名字典进行字符匹配抽取;

ii)用序列预测模型进行抽取。

序列预测模型又可以选用机器学习模型,比如条件随机场(CRF);或选用神经网络,比如 CRF+LSTM,或 CRF+BERT等。

具体选哪种方法呢?那就要看我们需要抽取的实体类型、文献类型和文献量了。

如果现在是从少量专业文献(例如论文、说明书、研究报告等)中抽取一些列专业名词表示的实体,那么用字典匹配方便直接代价小,可以一试。

如果是要从海量的各类文献中抽取一些通用的实体,那么借助模型则可能效果更佳。

具体用机器学习模型还是神经网络呢?这又和我们拥有的标注数据与计算资源有关,如果不差钱,想标多少数据,想训练多大模型都不在乎,上神经网络自然可以追求高准确率,但如果资源捉襟见肘,可能机器学习模型更加实用。

相关文章
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)概述
自然语言处理(NLP)是计算机科学、人工智能和语言学的交叉领域,旨在实现计算机与人类(自然)语言之间的相互理解和交流。背景可以追溯到早期人工智能研究,尤其是试图使计算机能够理解和生成人类语言的努力。
22 1
|
29天前
|
自然语言处理 算法 JavaScript
【自然语言处理NLP】社区发现快速入门(2)
【自然语言处理NLP】社区发现快速入门
55 0
【自然语言处理NLP】社区发现快速入门(2)
|
9天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自然语言处理(NLP)技术的详细介绍
自然语言处理(NLP)技术的详细介绍
16 2
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是人工智能和语言学的一个交叉领域,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
自然语言处理(NLP)是人工智能和语言学的一个交叉领域,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
6 0
|
4天前
|
自然语言处理 PyTorch API
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
10 0
|
16天前
|
机器学习/深度学习 自然语言处理 PyTorch
【机器学习】自然语言处理(NLP)领域革命性突破的模型——Transformer
【机器学习】自然语言处理(NLP)领域革命性突破的模型——Transformer
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文深入探讨了深度学习技术在自然语言处理(NLP)领域的应用现状及其面临的主要挑战。通过分析深度学习模型如循环神经网络(RNN)、长短时记忆网络(LSTM)和Transformer在语言建模、机器翻译、情感分析等任务中的表现,揭示了这些模型在理解和生成自然语言方面的潜力。同时,本文也指出了数据偏差、模型泛化、资源消耗以及伦理问题等挑战,为未来的研究方向提供了指引。
11 0
|
3天前
|
机器学习/深度学习 自然语言处理 TensorFlow
使用Python实现深度学习模型:文本生成与自然语言处理
【7月更文挑战第14天】 使用Python实现深度学习模型:文本生成与自然语言处理
30 12
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在自然语言处理中的应用与挑战
【7月更文挑战第12天】随着人工智能技术的飞速发展,深度学习已成为推动自然语言处理(NLP)领域革新的核心动力。本文将深入探讨深度学习技术如何赋能NLP,实现从文本分类到机器翻译的多样化应用,并分析当前面临的主要挑战,如数据偏差、模型可解释性及多语言处理问题,最后展望深度学习在NLP领域的未来发展方向。
20 5
|
4天前
|
机器学习/深度学习 自然语言处理 监控
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习在自然语言处理(NLP)领域的应用现状及面临的挑战。通过分析深度学习模型在文本分类、情感分析、机器翻译等任务中的成功案例和技术原理,深入剖析了语言数据的复杂性对模型训练和性能的影响。此外,文章还讨论了数据获取与质量、模型解释性、多语言处理等方面的挑战,并展望了未来深度学习在NLP中的发展方向。 【7月更文挑战第13天】