【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例(二)

简介: 【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例二)

系数上下限

假设我们要拟合我们的模型,但将系数限制为大于-0.7且小于0.5。这可以通过upper.limitslower.limits 参数实现 :

通常,我们希望系数为正,因此我们只能lower.limit 将其设置 为0。


惩罚因素

此参数允许用户将单独的惩罚因子应用于每个系数。每个参数的默认值为1,但可以指定其他值。特别是,任何penalty.factor 等于零的变量 都不会受到惩罚

在许多情况下,某些变量可能是重要,我们希望一直保留它们,这可以通过将相应的惩罚因子设置为0来实现:

我们从标签中看到惩罚因子为0的三个变量始终保留在模型中,而其他变量遵循典型的正则化路径并最终缩小为0。


自定义图

有时,尤其是在变量数量很少的情况下,我们想在图上添加变量标签。

我们首先生成带有10个变量的一些数据,然后,我们拟合glmnet模型,并绘制标准图。

我们希望用变量名标记曲线。在路径的末尾放置系数的位置。


多元正态

使用family = "mgaussian" option 获得多元正态分布glmnet

显然,顾名思义,y不是向量,而是矩阵。结果,每个λ值的系数也是一个矩阵。

在这里,我们解决以下问题:

这里,βj是p×K系数矩阵β的第j行,对于单个预测变量xj,我们用每个系数K向量βj的组套索罚分代替每个单一系数的绝对罚分。

我们使用预先生成的一组数据进行说明。

我们拟合数据,并返回对象“ mfit”。

mfit = glmnet(x, y, family = "mgaussian")

如果为 standardize.response = TRUE,则将因变量标准化。

为了可视化系数,我们使用 plot 函数。

注意我们设置了 type.coef = "2norm"。在此设置下,每个变量绘制一条曲线,其值等于ℓ2范数。默认设置为 type.coef = "coef",其中为每个因变量创建一个系数图。

通过使用该函数coef ,我们可以提取要求的λ值的系数, 并通过进行预测 。

## , , 1
## 
##           y1      y2      y3    y4
## \[1,\] -4.7106 -1.1635  0.6028 3.741
## \[2,\]  4.1302 -3.0508 -1.2123 4.970
## \[3,\]  3.1595 -0.5760  0.2608 2.054
## \[4,\]  0.6459  2.1206 -0.2252 3.146
## \[5,\] -1.1792  0.1056 -7.3353 3.248
## 
## , , 2
## 
##           y1      y2      y3    y4
## \[1,\] -4.6415 -1.2290  0.6118 3.780
## \[2,\]  4.4713 -3.2530 -1.2573 5.266
## \[3,\]  3.4735 -0.6929  0.4684 2.056
## \[4,\]  0.7353  2.2965 -0.2190 2.989
## \[5,\] -1.2760  0.2893 -7.8259 3.205

预测结果保存在三维数组中,其中前两个维是每个因变量的预测矩阵,第三个维表示因变量。

我们还可以进行k折交叉验证。

我们绘制结果 cv.glmnet 对象“ cvmfit”。

显示选定的λ最佳值

cvmfit$lambda.min
## \[1\] 0.04732
cvmfit$lambda.1se
## \[1\] 0.1317


逻辑回归

当因变量是分类的时,逻辑回归是另一个广泛使用的模型。如果有两个可能的结果,则使用二项式分布,否则使用多项式。


二项式模型

对于二项式模型,假设因变量的取值为G = {1,2} 。表示yi = I(gi = 1)。我们建模

可以用以下形式写

惩罚逻辑回归的目标函数使用负二项式对数似然

我们的算法使用对数似然的二次逼近,然后对所得的惩罚加权最小二乘问题进行下降。这些构成了内部和外部循环。

出于说明目的,我们 从数据文件加载预生成的输入矩阵 x 和因变量 y

对于二项式逻辑回归,因变量y可以是两个级别的因子,也可以是计数或比例的两列矩阵。

glmnet 二项式回归的其他可选参数与正态分布的参数 几乎相同。不要忘记将family 选项设置 为“ binomial”。

fit = glmnet(x, y, family = "binomial")

像以前一样,我们可以输出和绘制拟合的对象,提取特定λ处的系数,并进行预测。


逻辑回归略有不同,主要体现在选择上 type。“链接”和“因变量”不等价,“类”仅可用于逻辑回归。总之,*“链接”给出了线性预测变量

  • “因变量”给出合适的概率
  • “类别”产生对应于最大概率的类别标签。
  • “系数”计算值为的系数 s

在下面的示例中,我们在λ=0.05,0.01的情况下对类别标签进行了预测。

##      1   2  
## \[1,\] "0" "0"
## \[2,\] "1" "1"
## \[3,\] "1" "1"
## \[4,\] "0" "0"
## \[5,\] "1" "1"

对于逻辑回归,type.measure

  • “偏差”使用实际偏差。
  • “ mae”使用平均绝对误差。
  • “class”给出错误分类错误。
  • “ auc”(仅适用于两类逻辑回归)给出了ROC曲线下的面积。

例如,

它使用分类误差作为10倍交叉验证的标准。

我们绘制对象并显示λ的最佳值。

cvfit$lambda.min
## \[1\] 0.01476
cvfit$lambda.1se
## \[1\] 0.02579

coef 并且 predict 类似于正态分布案例,因此我们省略了细节。我们通过一些例子进行回顾。

## 31 x 1 sparse Matrix of class "dgCMatrix"
##                    1
## (Intercept)  0.24371
## V1           0.06897
## V2           0.66252
## V3          -0.54275
## V4          -1.13693
## V5          -0.19143
## V6          -0.95852
## V7           .      
## V8          -0.56529
## V9           0.77454
## V10         -1.45079
## V11         -0.04363
## V12         -0.06894
## V13          .      
## V14          .      
## V15          .      
## V16          0.36685
## V17          .      
## V18         -0.04014
## V19          .      
## V20          .      
## V21          .      
## V22          0.20882
## V23          0.34014
## V24          .      
## V25          0.66310
## V26         -0.33696
## V27         -0.10570
## V28          0.24318
## V29         -0.22445
## V30          0.11091

如前所述,此处返回的结果仅针对因子因变量的第二类。

##       1  
##  \[1,\] "0"
##  \[2,\] "1"
##  \[3,\] "1"
##  \[4,\] "0"
##  \[5,\] "1"
##  \[6,\] "0"
##  \[7,\] "0"
##  \[8,\] "0"
##  \[9,\] "1"
## \[10,\] "1"


多项式模型

对于多项式模型,假设因变量变量的K级别为G = {1,2,…,K}。在这里我们建模

设Y为N×K指标因变量矩阵,元素yiℓ= I(gi =ℓ)。然后弹性网惩罚的负对数似然函数变为

β是系数的p×K矩阵。βk指第k列(对于结果类别k),βj指第j行(变量j的K个系数的向量)。最后一个惩罚项是||βj|| q ,我们对q有两个选择:q∈{1,2}。当q = 1时,这是每个参数的套索惩罚。当q = 2时,这是对特定变量的所有K个系数的分组套索惩罚,这使它们在一起全为零或非零。

对于多项式情况,用法类似于逻辑回归,我们加载一组生成的数据。

glmnet 除少数情况外,多项式逻辑回归中的可选参数 与二项式回归基本相似。

多项式回归的一个特殊选项是 type.multinomial,如果允许,则允许使用分组的套索罚分 type.multinomial = "grouped"。这将确保变量的多项式系数全部一起输入或输出,就像多元因变量一样。

我们绘制结果。

我们还可以进行交叉验证并绘制返回的对象。

预测最佳选择的λ:

##       1  
##  \[1,\] "3"
##  \[2,\] "2"
##  \[3,\] "2"
##  \[4,\] "1"
##  \[5,\] "1"
##  \[6,\] "3"
##  \[7,\] "3"
##  \[8,\] "1"
##  \[9,\] "1"
## \[10,\] "2"


泊松模型

Poisson回归用于在假设Poisson误差的情况下对计数数据进行建模,或者在均值和方差成比例的情况下使用非负数据进行建模。泊松也是指数分布族的成员。我们通常以对数建模:

给定观测值 的对数似然

和以前一样,我们优化了惩罚对数:

Glmnet使用外部牛顿循环和内部加权最小二乘循环(如逻辑回归)来优化此标准。

首先,我们加载一组泊松数据。

再次,绘制系数。

像以前一样,我们可以 分别使用coef 和 提取系数并在特定的λ处进行预测 predict

例如,我们可以

## 21 x 1 sparse Matrix of class "dgCMatrix"
##                    1
## (Intercept)  0.61123
## V1           0.45820
## V2          -0.77061
## V3           1.34015
## V4           0.04350
## V5          -0.20326
## V6           .      
## V7           .      
## V8           .      
## V9           .      
## V10          .      
## V11          .      
## V12          0.01816
## V13          .      
## V14          .      
## V15          .      
## V16          .      
## V17          .      
## V18          .      
## V19          .      
## V20          .
##            1       2
## \[1,\]  2.4944  4.4263
## \[2,\] 10.3513 11.0586
## \[3,\]  0.1180  0.1782
## \[4,\]  0.9713  1.6829
## \[5,\]  1.1133  1.9935

我们还可以使用交叉验证来找到最佳的λ,从而进行推断。

选项几乎与正态族相同,不同之处在于 type.measure,“ mse”代表均方误差,“ mae”代表均值绝对误差。

我们可以绘制 cv.glmnet 对象。

我们还可以显示最佳的λ和相应的系数。

## 21 x 2 sparse Matrix of class "dgCMatrix"
##                     1        2
## (Intercept)  0.031263  0.18570
## V1           0.619053  0.57537
## V2          -0.984550 -0.93212
## V3           1.525234  1.47057
## V4           0.231591  0.19692
## V5          -0.336659 -0.30469
## V6           0.001026  .      
## V7          -0.012830  .      
## V8           .         .      
## V9           .         .      
## V10          0.015983  .      
## V11          .         .      
## V12          0.030867  0.02585
## V13         -0.027971  .      
## V14          0.032750  .      
## V15         -0.005933  .      
## V16          0.017506  .      
## V17          .         .      
## V18          0.004026  .      
## V19         -0.033579  .      
## V20          0.012049  0.00993


Cox模型

Cox比例风险模型通常用于研究预测变量与生存时间之间的关系。

Cox比例风险回归模型,它不是直接考察 与X的关系,而是用 作为因变量,模型的基本形式为:

式中, 为自变量的偏回归系数,它是须从样本数据作出估计的参数; 是当X向量为0时, 的基准危险率,它是有待于从样本数据作出估计的量。简称为Cox回归模型

由于Cox回归模型对 未作任何假定,因此Cox回归模型在处理问题时具有较大的灵活性;另一方面,在许多情况下,我们只需估计出参数 (如因素分析等),即使在 未知的情况下,仍可估计出参数 。这就是说,Cox回归模型由于含有 ,因此它不是完全的参数模型,但仍可根据公式(1)作出参数 的估计,故Cox回归模型属于半参数模型

公式可以转化为:

我们使用一组预先生成的样本数据。用户可以加载自己的数据并遵循类似的过程。在这种情况下,x必须是协变量值的n×p矩阵-每行对应一个患者,每列对应一个协变量。y是一个n×2矩阵。

##         time status
## \[1,\] 1.76878      1
## \[2,\] 0.54528      1
## \[3,\] 0.04486      0
## \[4,\] 0.85032      0
## \[5,\] 0.61488      1

Surv 包中的 函数 survival 可以创建这样的矩阵。

我们计算默认设置下的求解路径。

绘制系数。

提取特定值λ处的系数。

## 30 x 1 sparse Matrix of class "dgCMatrix"
##            1
## V1   0.37694
## V2  -0.09548
## V3  -0.13596
## V4   0.09814
## V5  -0.11438
## V6  -0.38899
## V7   0.24291
## V8   0.03648
## V9   0.34740
## V10  0.03865
## V11  .      
## V12  .      
## V13  .      
## V14  .      
## V15  .      
## V16  .      
## V17  .      
## V18  .      
## V19  .      
## V20  .      
## V21  .      
## V22  .      
## V23  .      
## V24  .      
## V25  .      
## V26  .      
## V27  .      
## V28  .      
## V29  .      
## V30  .

函数 cv.glmnet 可用于计算Cox模型的k折交叉验证。

拟合后,我们可以查看最佳λ值和交叉验证的误差图,帮助评估我们的模型。

如前所述,图中的左垂直线向我们显示了CV误差曲线达到最小值的位置。右边的垂直线向我们展示了正则化的模型,其CV误差在最小值的1个标准偏差之内。我们还提取了最优λ。

cvfit$lambda.min
## \[1\] 0.01594
cvfit$lambda.1se
## \[1\] 0.04869

我们可以检查模型中的协变量并查看其系数。

index.min
##  \[1\]  0.491297 -0.174601 -0.218649  0.175112 -0.186673 -0.490250  0.335197
##  \[8\]  0.091587  0.450169  0.115922  0.017595 -0.018365 -0.002806 -0.001423
## \[15\] -0.023429  0.001688 -0.008236
coef.min
## 30 x 1 sparse Matrix of class "dgCMatrix"
##             1
## V1   0.491297
## V2  -0.174601
## V3  -0.218649
## V4   0.175112
## V5  -0.186673
## V6  -0.490250
## V7   0.335197
## V8   0.091587
## V9   0.450169
## V10  0.115922
## V11  .       
## V12  .       
## V13  0.017595
## V14  .       
## V15  .       
## V16  .       
## V17 -0.018365
## V18  .       
## V19  .       
## V20  .       
## V21 -0.002806
## V22 -0.001423
## V23  .       
## V24  .       
## V25 -0.023429
## V26  .       
## V27  0.001688
## V28  .       
## V29  .       
## V30 -0.008236


稀疏矩阵

我们的程序包支持稀疏的输入矩阵,该矩阵可以高效地存储和操作大型矩阵,但只有少数几个非零条目。

我们加载一组预先创建的样本数据。

加载100 * 20的稀疏矩阵和 y因向量。

## \[1\] "dgCMatrix"
## attr(,"package")
## \[1\] "Matrix"

我们可以像以前一样拟合模型。

fit = glmnet(x, y)

进行交叉验证并绘制结果对象。

预测新输入矩阵 。例如,

##            1
## \[1,\]  0.3826
## \[2,\] -0.2172
## \[3,\] -1.6622
## \[4,\] -0.4175
## \[5,\] -1.3941
相关文章
|
6月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
图形学
R语言其他相关函数(各函数解析含实例,可供查询)
R语言其他相关函数(各函数解析含实例,可供查询)
208 0
|
6月前
R语言绘图相关函数(含实例)
R语言绘图相关函数(含实例)
51 0
|
6月前
|
移动开发 数据可视化
广义线性模型beta二项分布的淋巴结疾病风险预测可视化R语言2实例合集|附数据代码
广义线性模型beta二项分布的淋巴结疾病风险预测可视化R语言2实例合集|附数据代码
|
6月前
|
机器学习/深度学习 人工智能 数据可视化
【视频】R语言支持向量回归SVR预测水位实例讲解|附代码数据
【视频】R语言支持向量回归SVR预测水位实例讲解|附代码数据
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
21天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。