Python基于Flask的高校舆情分析,舆情监控可视化系统

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: Python基于Flask的高校舆情分析,舆情监控可视化系统

一、前言


在当今社会,舆情监控越来越被重视。随着互联网技术的发展,我们从传统媒体渠道、官方报告、调查问卷等方式搜集到的舆情信息,逐渐被网络上的内容所替代。因为网络上的内容传播速度快、及时性强、覆盖范围广,成为了管理者、企业、政府等了解社会大众情绪、掌握市场动向的重要途径。

本文介绍如何基于Flask框架,使用Python语言编写一个高校舆情分析,舆情监控可视化系统。


二、使用Python获取舆情数据


主要有两种方式,一种是直接使用API接口,通过调用API获取相应的数据。另一种方式是使用Python获取网站上的数据。


本文介绍的是第二种数据获取方式,以中国大学排名网为例。


1.安装requests库


首先需要安装requests库,requests库是Python中的HTTP客户端库,能够模拟HTTP请求,发送请求、接收响应。使用以下命令进行安装:

!pip install requests

2.分析数据


我们需要分析数据。打开中国大学排名网,点击“大学排名”->“全球排名”,网站链接为:http://www.zuihaodaxue.com/ARWU2020.html

从网站中我们可以看到展示的数据大致如下:

我们需要获取的数据列为“排名”、“学校名称”、“所在地区”、“总分”。


3.获取数据


首先,我们需要导入requests库、BeautifulSoup库。

import requests
from bs4 import BeautifulSoup

接着,我们需要设置请求头和请求参数,这里我们设置如下:

headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
params = {
    'from': 'hao360',
    'ie': 'utf-8',
    'query': 'python'}

其中,headers为请求头,用于告诉服务器我们的身份信息,params为请求参数,表示要搜索“python”关键词。

接着,我们使用requests库发送请求,获取网页内容,并解析所需的数据。

url = 'http://www.zuihaodaxue.com/ARWU2020.html'
 
response = requests.get(url, headers=headers)
response.encoding = response.apparent_encoding
 
soup = BeautifulSoup(response.text, 'html.parser')
 
all_university = soup.findAll('tr', {'class': 'bgfd'})
for university in all_university:
    rank = university.find('td', {'align': 'center'}).getText()
    name = university.find('a').getText()
    region = university.find('div', {'style': 'padding-left:10px;'}).getText().strip()
    score = university.findAll('td', {'align': 'center'})[-1].getText()
    print(rank, name, region, score)

这样,我们就可以获取到所有大学的排名、学校名称、所在地区、总分数据。


三、通过代理IP提高效率


如果频繁访问同一个网站,可能会被检测到,从而导致IP被封,无法正常访问。这时候,我们可以使用代理IP来避免这个问题,可以更好地保护我们的真实IP,达到更好的效果。


1.获取代理IP


在互联网上有很多代理IP提供商,我们可以通过购买代理IP解决被封IP的问题。这里,我们使用的是免费的站大爷代理ip(https://www.zdaye.com/)提供的免费IP。


在站大爷代理ip网站上,我们可以获得如下信息:


  • IP地址
  • 端口号
  • 区域
  • 匿名度
  • 类型
  • 存活时间
  • 验证时间


我们需要使用的是IP地址和端口号,将它们加入到请求头中,即可使用代理IP进行数据爬取。


2.使用代理IP


使用代理IP的方式非常简单,只需要将代理IP加入到请求头中即可。例如,以下代码使用站大爷代理提供的代理IP:

import requests
 
url = 'http://www.zuihaodaxue.com/ARWU2020.html'
 
proxies = {'http': 'http://111.177.190.36:9999', 'https': 'https://111.177.190.36:9999'}
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
 
response = requests.get(url, headers=headers, proxies=proxies)
 
print(response.text)

这里我们设置了一个代理IP,格式为http://IP:port。在发送请求时,通过proxies参数将代理IP加入到请求头中,即可使用代理IP。


四、使用Flask框架实现舆情监控可视化系统


Flask是一个轻量级的Python Web框架,用于编写基于Web的应用程序。它非常适合小型应用程序和简单的Web服务,同时也可以作为基于大型应用程序的核心。


Flask框架包含了请求分发、模板渲染、数据存取等功能,非常适合开发Web应用程序和API。


在使用Flask框架搭建舆情监控可视化系统时,我们需要安装Flask和pymongo(用于连接MongoDB数据库)库,并使用以下代码创建Flask应用程序:

import json
from flask import Flask, render_template
from pymongo import MongoClient
 
app = Flask(__name__)
 
@app.route('/')
def index():
    client = MongoClient('localhost', 27017)
    db = client['university']
    collection = db['ARWU']
    data_list = []
    for data in collection.find():
        del data['_id']
        data_list.append(data)
    return render_template('index.html', data_list=json.dumps(data_list, ensure_ascii=False))
 
if __name__ == '__main__':
    app.run()

其中,localhost代表MongoDB数据库所在的主机名,27017代表MongoDB数据库的端口号。此外,我们也可以使用request库获取前端传输来的数据,例如:

from flask import request
 
@app.route('/api/search', methods=['GET'])
def search():
    keyword = request.args.get('keyword')
    client = MongoClient('localhost', 27017)
    db = client['university']
    collection = db['ARWU']
    data_list = []
    for data in collection.find({'name': {'$regex': keyword}}):
        del data['_id']
        data_list.append(data)
    return json.dumps(data_list, ensure_ascii=False)

在使用Flask框架时,我们需要创建一个templates文件夹,用于存放html文件,如下所示:![templates](https://CS0waW1nLmNvbS9BdWxuZXdzL2RlZmF1bHRfc3RvcmUuanBn)


在templates文件夹中,我们需要创建一个index.html文件,用于显示数据。具体代码如下:

<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>中国大学排名</title>
    <script src="https://cdn.jsdelivr.net/npm/echarts/dist/echarts.min.js"></script>
    <style>
        /* 设置容器大小 */
        #main {
            height: 600px;
        }
    </style>
</head>
<body>
<!-- 设置一个容器用于展示数据 -->
<div id="main"></div>
<!-- 使用JavaScript渲染表格 -->
<script type="text/javascript">
    // 获取后端传输的数据
    var data = JSON.parse({{data_list}});
    // 初始化echarts图表
    var myChart = echarts.init(document.getElementById('main'));
 
    // 配置图表参数
    var option = {
        tooltip: {},
        legend: {
            data: ['总分']
        },
        xAxis: {
            data: data.map(function (item) {
                return item.name;
            })
        },
        yAxis: {},
        series: [{
            name: '总分',
            type: 'bar',
            data: data.map(function (item) {
                return item.score;
            })
        }]
    };
 
    // 使用刚指定的配置项和数据显示图表。
    myChart.setOption(option);
</script>
</body>
</html>

这里,我们使用了ECharts库(https://echarts.apache.org/)来实现数据可视化展示。最后,在命令行中运行app.py文件,即可启动Flask应用程序。


五、使用MongoDB存储数据


在本例中,我们使用MongoDB作为数据存储方式。MongoDB是一种非关系型数据库,与关系型数据库相比,MongoDB更加灵活、扩展性更好、支持海量数据存储等特点。


在Python中,我们可以使用pymongo库来进行MongoDB的连接和操作。具体代码如下:

from pymongo import MongoClient
 
client = MongoClient('localhost', 27017)
db = client['university']
collection = db['ARWU']
 
data = {'rank': '1', 'name': 'Harvard University', 'region': 'USA', 'score': '100'}
collection.insert_one(data)
 
result = collection.find({'region': 'USA'})
for data in result:
    print(data)

在上述代码中,我们首先连接MongoDB,并选择要操作的数据库和集合。然后,我们插入一条数据,并通过find方法查询指定条件的数据。


六、总结


本文介绍了如何使用Python获取舆情数据,通过使用代理IP提高效率。同时,我们还学习了如何使用Flask框架搭建舆情监控可视化系统,以及使用MongoDB存储数据。


这个舆情监控可视化系统还有许多需要完善和改进的地方,例如如何实时更新数据、如何提高数据可视化展示的交互性等等,希望读者能够在此基础上进行更进一步的探索和实践。


相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
160 55
|
1月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
65 4
|
1天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
87 66
|
22天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
123 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
5天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
44 20
|
3天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
34 5
|
24天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
37 4
基于Python深度学习的果蔬识别系统实现
|
21天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
91 7
|
1月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
1月前
|
JSON 前端开发 API
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API