PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化

简介: PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化

这篇文章介绍了一类离散随机波动率模型,并介绍了一些特殊情况,包括 GARCH 和 ARCH 模型。本文展示了如何模拟这些过程以及参数估计。这些实验编写的 Python 代码在文章末尾引用。

离散随机波动率模型

是一个随机基,有一个完整的 的可测量子集 , 一个概率测量 和一个过滤

  • 因此,时间实例使用非负整数进行索引
  • 获取序列的第一个 t元素 , 记

_离散随机波动率_(   DSV) 模型中, 是一个实值 stochastic process (一系列随机变量)满足以下方程:

其中:

  • Z 是 F 的噪声过程。
  • φi 是实数,我假设 并且 gi ,hi 是非负值。
  • fi 、gi 和 h_ihi 是过程的确定性函数。
  • 过程 通常称为 _偏移_,而 σ 称为  X的_波动率。_因为σ 是一个随机过程,所以上面定义的过程 X 属于一个随机波动率模型的大家族。
  • 对于噪声过程 Z,使得每个 Z_t的均值和方差都存在,我们有 .

案例

制定通用 DSV 模型的特化:

后移算子 ,对于 ,产生其参数过程的滞后版本,即 , 和 , 如果 . 例如

为方便起见,我设置 .

对于下面列表中的所有特殊情况,我假设函数 fi 、gi 和 h_i 从参数过程中选择一个元素,即 , 和 .

GARCH 过程定义另外设置

_GARCH(1, 1)_过程非常流行:

ARCH 过程中,波动性具有简化形式,对于所有 i,λi = 0,并且

_ARCH(1)_过程还 满足 对所有   :

模拟

离散随机波动率模型通常用于对观察到的时间序列的对数收益进行建模。因此,为了模拟原始时间序列的路径,我们需要模拟其对数收益并计算 .

由带参数的高斯噪声驱动的 GARCH(1,1) 过程的样本路径 :

path( \[0.001, 0.2, 0.25\])
cumprod* repeat.reshape
plt.subplots

注意 σ 过程为 不能低于 ≈0.0353

最大似然估计

最大似然(ML)参数估计是所有讨论模型的选择方法,因为转换密度,即给定过去信息的 X_t 的密度 是明确已知的。因此,过程样本路径 x 的对数似然函数由下式给出

其中 ,而 是 Z的密度。将上述对数似然函数最小化可得到 的最大似然估计

.

蒙特卡罗研究

为了测试 ML 参数估计过程,我进行了以下蒙特卡罗实验。

  • 使用参数 (0.001, 0.2, 0.25) 模拟长度为 5000 的 2500 个独立 GARCH(1,1) 过程路径。我使用了高斯噪声,即 .
  • 将这些路径中的每一个都输入到 ML 估计并获得估计的参数向量 .
  • 此优化过程中参数的搜索范围限制为 [1e-8, 1]。
  • 将原始 与估计的 进行比较。
  • 使用参数向量 模拟 GARCH(1,1),计算均值和标准差,并将它们与“真实”均值和标准差(分别为 5.098 和 1.084)进行比较。

正如期望的那样,估计量 非常不准确,并且在大多数情况下,甚至不接近真实向量 。特别是,估计的 通常设置为零(参见下面的直方图)。

ps = \[0.001, 0.2, 0.25\]
cumprod * repeat
print, np.std

另一方面,来自估计的 的过程均值和标准偏差要准确得多。这是一件好事,因为我们通常更关心恢复未知数据生成过程的特征,而不是模型的真实参数值。

mes, stvs, esms 
  
    ax\[1\].hist
    fig.tight_layout

柯西噪音

噪声过程  不必归一化为均值 0 和方差 1。实际上,我们只需要确保随机变量 Zt 的分布具有密度即可。如果是这种情况,过程模拟和 ML 估计都可以按照描述的方式工作。

那么如何用从柯西分布中采样的噪声替换高斯噪声呢?在许多概率论书籍中,柯西分布被用作反例,因为它具有许多“病态”特性。例如,它没有均值,因此也没有方差。

我不知道柯西分布中的不稳定样本是什么样子的。看一下带有参数向量的 GARCH(1,1) 过程的示例路径 :

如果使用路径生成函数的时间足够长,甚至可能会生成溢出异常。因此,我用来生成上面显示的直方图的 Python 函数失败了。为了了解原因,让我们使用来自柯西分布的样本生成一些直方图:

柯西分布具有分位数函数

评估 给出

这意味着,例如,在 0.0001 的概率下,采样值大于 3183.10。为了比较,让我们计算标准正态分布的相应分位数:

norm.ppf(0.99)

norm.ppf(0.999)

norm.ppf(0.9999)

相关文章
|
1天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
50 37
Python时间序列分析工具Aeon使用指南
|
28天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
170 73
|
4天前
|
SQL 存储 XML
常见Web漏洞分析与防范研究
在以上内容中,结合OWASP、Toptal和Brightsec等权威来源的信息,确保回答的专业性和准确性。通过图表和思维导图的方式,可以更系统地了解和记忆Web安全知识,帮助企业在实际应用中更好地防范各种安全威胁。
34 13
|
1月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
81 21
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
80 23
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
58 2
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
26天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
107 80