Python、R对小说进行文本挖掘和层次聚类可视化分析案例

简介: Python、R对小说进行文本挖掘和层次聚类可视化分析案例

《第二十二条军规》是美国作家约瑟夫·海勒创作的长篇小说,该小说以第二次世界大战为背景,通过对驻扎在地中海一个名叫皮亚诺扎岛(此岛为作者所虚构)上的美国空军飞行大队所发生的一系列事件的描写,揭示了一个非理性的、无秩序的、梦魇似的荒诞世界。我喜欢整本书中语言的创造性使用和荒谬人物的互动。本文对该小说进行文本挖掘和可视化。

 

数据集

该文有大约175,000个单词,分为42章。我在网上找到了这本书的原始文本版本。

我使用正则表达式和简单字符串匹配的组合在Python中解析文本。

我shiny在R中以交互方式可视化这些数据集。

地理图



geo<- catch22[( geo$Time > chapters[1]) & ( geo$Time < (chapters[2] + 1)),]paths_sub <-  paths[( paths$time > chapters[1]) & ( paths$time < (chapters[2] + 1)),]
# 绘图p <- ggplot() + borders("world", colour="black", fill="lightyellow") +ylab(NULL) + xlab(NULL) +# 仅在有条件的情况下尝试绘制位置和路径if (nrow( geo_sub) != 0) {p + geom_point(data= geo_sub, aes(x = Lon, y = Lat), size=3, colour='red') +geom_point(data= paths_sub[1,], aes(x = lon, y = lat), size=3, colour='red') +geom_path(data= paths_sub, aes(x = lon, y = lat, alpha=alpha), size=.7,

可视化映射了整本书中提到的地中海周围位置。

人物章节关系



ggplot(catch22, aes(x=Chapter, y=Character, colour=cols)) +geom_point(size=size, shape='|', alpha=0.8) +scale_x_continuous(limits=c(chapters[1],(chapters[2] + 1)), expand=c(0,0), breaks=(1:42)+0.5, labels=labs) +ylab(NULL) + xlab('Chapter') +theme(axis.text.x = element_text(colour = "black", angle = 45, hjust = 1, vjust=1.03),axis.text.y = element_text(colour = "black"),axis.title.x = element_text(vjust=5),plot.title = element_text(vjust=1)) +

该图基本上代表了书中提到不同人物的序列。

我将数据绘制为标准散点图,章节为x轴(因为它与时间相似),人物为离散y轴。

 

人物共现矩阵



ggplot(coloca, aes(x=Character, y=variable, alpha=alpha)) +geom_tile(aes(fill=factor(cluster)), colour='white') +ylab(NULL) + xlab(NULL) +theme(axis.text.x = element_text(colour = "black", angle = 45, hjust = 1, vjust=1.03),axis.text.y = element_text(colour = "black"),axis.ticks.y = element_blank(),axis.ticks.x = element_blank(),panel.grid.minor = element_line(colour = "white", size = 1),panel.grid.major = element_blank()) +scale_fill_manual(values = cols, guide = FALSE) +scale_alpha_continuous(guide = FALSE)

用于构建此可视化的数据与前一个中使用的数据完全相同,但需要进行大量的转换。

聚类为此图添加了另一个维度。在整本书上应用层次聚类,以尝试在角色中找到社群。使用AGNES算法对字符进行聚类。对不同聚类方案进行人工检查发现最优聚类,因为更频繁出现的角色占主导地位最少。这是六个簇的树形图:



ag <- agnes(cat2[,-1], method="complete", stand=F)# 从树状图中切出聚类cluster <- cutree(ag, k=clusters)

应该注意,聚类是在整个文本上执行的,而不是章节。按聚类排序会将角色带入紧密的社区,让观众也可以看到角色之间的某些交互。

特色词


ggplot( pos2, aes(Chapter, normed, colour=Word, fill=Word)) +
scale_color_brewer(type='qual', palette='Set1', guide = FALSE) +
scale_fill_brewer(type='qual', palette='Set1') +
scale_y_continuous(limits=c(0,y_max), expand=c(0,0)) +
ylab('Relative Word Frequency') + xlab('Chapter') +

堆叠条形图更好地显示了单词所在的章节。

 

结论

我在这个过程中学到了很多东西,无论是在使用方面,还是在shiny。

相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
58 4
|
8天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
25天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
10天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
17天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
62 7
|
1月前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
67 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
16天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
26 3
|
1月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
32 2
Python实用记录(三):通过netron可视化模型
|
17天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
33 2
|
22天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化