python在Scikit-learn中用决策树和随机森林预测NBA获胜者

简介: python在Scikit-learn中用决策树和随机森林预测NBA获胜者

在本文中,我们将以Scikit-learn的决策树和随机森林预测NBA获胜者。美国国家篮球协会(NBA)是北美主要的男子职业篮球联赛,被广泛认为是首屈一指的男子职业篮球联赛在世界上。它有30个团队(美国29个,加拿大1个)。

在 常规赛期间,每支球队打82场比赛,每场41场。一支球队每年会有四次面对对手(16场比赛)。每个小组在其四次(24场比赛)中的其他两个小组中的六个小组中进行比赛,其余四个小组三次(12场)进行比赛。最后,每个队都会在另一场比赛中两次参加所有的球队(30场比赛)。


用决策树和随机森林预测NBA获胜者

#导入数据集并解析日期导入作为

pd df = pd 。read_csv (“NBA_2017_regularGames.csv” ,parse_dates = [ “Date” ])

 

从游戏玩法的描述中,我们可以计算机会率。在每场比赛中,主队和客队都有可能赢得一半时间


预测类

在下面的代码中,我们将指定我们的分类类。这将帮助我们查看决策树分类器的预测是否正确。如果主队获胜,我们将指定我们的等级为1,如果访客队在另一个名为“主队赢”的列中获胜,我们将指定为0。


df [ “主队获胜” ] = df [ “访客积分” ] < df [ “主队积分” ]

主队胜率:58.4%

#该数组现在拥有scikit-learn可以读取的格式的类值。


特征工程

我们将创建以下功能来帮助我们预测NBA 2017年的获胜者。

无论是来访者还是主队都赢得了最后一场比赛。


一般认为哪个团队更好?

scikit-learn软件包实现CART(分类和回归树)算法作为其默认 决策树类

决策树实现提供了一种方法来停止构建树,以防止过度使用以下选项:

• min_samples_split

建议使用min_samples_split或min_samples_leaf来控制叶节点处的采样数。一个非常小的数字通常意味着树将过度拟合,而大量的数据将阻止树学习数据。

决策的另一个参数是创建决策的标准。基尼的不纯和信息收益是两种流行的:


• Gini impurity: measures how often a decision node would incorrectly predict a sample's class•`Information gain: indicate how much extra information is gained by the decision node


功能选择

我们通过指定我们希望使用的列并使用数据框视图的values参数,从数据集中提取要素以与我们的scikit-learn的DecisionTreeClassifier一起使用。我们使用cross_val_score函数来测试结果。


X_features_only = df [[ 'Home Win Streak' ,'Visitor Win Streak' ,'Home Team Ranks Higher' ,'Home Team Won Last' ,'Home Last Win' ,'Visitor Last Win' ]]

结果准确性:56.0%

通过选择我们制作的功能,精确度下降到56%。是否有可能通过添加更多功能来提高准确性。

混淆矩阵显示了我们决策树的正确和不正确的分类。对角线1,295分别表示主队的真正负数和真正的正数。左下角的1表示假阴性的数量。而右上角的195,误报的数量。我们也可以查看大约0.602的准确性分数,这表明决策树模型已经将60.2%的样本正确地归类为主队获胜与否。


导入pydotplus 图

出于探索的目的,测试较少数量的变量以便首先获得决策树输出的感觉会很有帮助。最终的树开始于X的分裂,我们的第一个解释变量,主队队列更高。如果主队排名较高的值小于4.5,那么主队就会松动,因为我们的二元变量具有虚假等值亏损值和真实同赢。

如有任何问题、意见,请留言咨询

相关文章
|
5天前
|
机器学习/深度学习 数据可视化 安全
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化(下)
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化
|
5天前
|
机器学习/深度学习 数据可视化 Python
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化(上)
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化
|
5天前
|
JSON 数据可视化 Shell
数据结构可视化 Graphviz在Python中的使用 [树的可视化]
数据结构可视化 Graphviz在Python中的使用 [树的可视化]
12 0
|
5天前
|
机器学习/深度学习 数据采集 数据可视化
Python众筹项目结果预测:优化后的随机森林分类器可视化|数据代码分享
Python众筹项目结果预测:优化后的随机森林分类器可视化|数据代码分享
|
5天前
|
机器学习/深度学习 数据采集 数据可视化
数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化
数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化
|
5天前
|
SQL 分布式计算 数据可视化
数据分享|Python、Spark SQL、MapReduce决策树、回归对车祸发生率影响因素可视化分析
数据分享|Python、Spark SQL、MapReduce决策树、回归对车祸发生率影响因素可视化分析
|
5天前
|
机器学习/深度学习 算法 Python
【Python 机器学习专栏】随机森林算法的性能与调优
【4月更文挑战第30天】随机森林是一种集成学习方法,通过构建多棵决策树并投票或平均预测结果,具有高准确性、抗过拟合、处理高维数据的能力。关键性能因素包括树的数量、深度、特征选择和样本大小。调优方法包括调整树的数量、深度,选择关键特征和参数优化。Python 示例展示了使用 GridSearchCV 进行调优。随机森林广泛应用于分类、回归和特征选择问题,是机器学习中的重要工具。
|
5天前
|
机器学习/深度学习 算法 数据可视化
【Python机器学习专栏】决策树算法的实现与解释
【4月更文挑战第30天】本文探讨了决策树算法,一种流行的监督学习方法,用于分类和回归。文章阐述了决策树的基本原理,其中内部节点代表特征判断,分支表示判断结果,叶节点代表类别。信息增益等标准用于衡量特征重要性。通过Python的scikit-learn库展示了构建鸢尾花数据集分类器的示例,包括训练、预测、评估和可视化决策树。最后,讨论了模型解释和特征重要性评估在优化中的作用。
|
5天前
|
机器学习/深度学习 数据采集 算法
【Python机器学习专栏】使用Scikit-learn进行数据编码
【4月更文挑战第30天】本文介绍了Python Scikit-learn库在机器学习数据预处理中的作用,尤其是数据编码。数据编码将原始数据转化为算法可理解的格式,包括标签编码(适用于有序分类变量)、独热编码(适用于无序分类变量)和文本编码(如词袋模型、TF-IDF)。Scikit-learn提供LabelEncoder和OneHotEncoder类实现这些编码。示例展示了如何对数据进行标签编码和独热编码,强调了正确选择编码方法的重要性。