python在Scikit-learn中用决策树和随机森林预测NBA获胜者

简介: python在Scikit-learn中用决策树和随机森林预测NBA获胜者

在本文中,我们将以Scikit-learn的决策树和随机森林预测NBA获胜者。美国国家篮球协会(NBA)是北美主要的男子职业篮球联赛,被广泛认为是首屈一指的男子职业篮球联赛在世界上。它有30个团队(美国29个,加拿大1个)。

在 常规赛期间,每支球队打82场比赛,每场41场。一支球队每年会有四次面对对手(16场比赛)。每个小组在其四次(24场比赛)中的其他两个小组中的六个小组中进行比赛,其余四个小组三次(12场)进行比赛。最后,每个队都会在另一场比赛中两次参加所有的球队(30场比赛)。


用决策树和随机森林预测NBA获胜者

#导入数据集并解析日期导入作为

pd df = pd 。read_csv (“NBA_2017_regularGames.csv” ,parse_dates = [ “Date” ])

 

从游戏玩法的描述中,我们可以计算机会率。在每场比赛中,主队和客队都有可能赢得一半时间


预测类

在下面的代码中,我们将指定我们的分类类。这将帮助我们查看决策树分类器的预测是否正确。如果主队获胜,我们将指定我们的等级为1,如果访客队在另一个名为“主队赢”的列中获胜,我们将指定为0。


df [ “主队获胜” ] = df [ “访客积分” ] < df [ “主队积分” ]

主队胜率:58.4%

#该数组现在拥有scikit-learn可以读取的格式的类值。


特征工程

我们将创建以下功能来帮助我们预测NBA 2017年的获胜者。

无论是来访者还是主队都赢得了最后一场比赛。


一般认为哪个团队更好?

scikit-learn软件包实现CART(分类和回归树)算法作为其默认 决策树类

决策树实现提供了一种方法来停止构建树,以防止过度使用以下选项:

• min_samples_split

建议使用min_samples_split或min_samples_leaf来控制叶节点处的采样数。一个非常小的数字通常意味着树将过度拟合,而大量的数据将阻止树学习数据。

决策的另一个参数是创建决策的标准。基尼的不纯和信息收益是两种流行的:


• Gini impurity: measures how often a decision node would incorrectly predict a sample's class•`Information gain: indicate how much extra information is gained by the decision node


功能选择

我们通过指定我们希望使用的列并使用数据框视图的values参数,从数据集中提取要素以与我们的scikit-learn的DecisionTreeClassifier一起使用。我们使用cross_val_score函数来测试结果。


X_features_only = df [[ 'Home Win Streak' ,'Visitor Win Streak' ,'Home Team Ranks Higher' ,'Home Team Won Last' ,'Home Last Win' ,'Visitor Last Win' ]]

结果准确性:56.0%

通过选择我们制作的功能,精确度下降到56%。是否有可能通过添加更多功能来提高准确性。

混淆矩阵显示了我们决策树的正确和不正确的分类。对角线1,295分别表示主队的真正负数和真正的正数。左下角的1表示假阴性的数量。而右上角的195,误报的数量。我们也可以查看大约0.602的准确性分数,这表明决策树模型已经将60.2%的样本正确地归类为主队获胜与否。


导入pydotplus 图

出于探索的目的,测试较少数量的变量以便首先获得决策树输出的感觉会很有帮助。最终的树开始于X的分裂,我们的第一个解释变量,主队队列更高。如果主队排名较高的值小于4.5,那么主队就会松动,因为我们的二元变量具有虚假等值亏损值和真实同赢。

如有任何问题、意见,请留言咨询

相关文章
|
4月前
|
数据采集 数据可视化 API
驱动业务决策:基于Python的App用户行为分析与可视化方案
驱动业务决策:基于Python的App用户行为分析与可视化方案
|
8月前
|
算法 Java Python
使用Python来绘制樱花树
本文以林徽因的《你是人间的四月天》为引,将春日意象与现代职场编程艺术结合,通过Python的Turtle模块绘制分形树和花瓣图案。文章详细解析了Turtle模块的使用方法、递归算法及随机性在图形生成中的应用,展示了如何用代码创造自然美感。核心代码包含tree函数(绘制分形树)和petal函数(绘制花瓣),最终生成一幅生动的春日画卷。项目不仅帮助读者掌握Turtle绘图技巧,更激发对编程艺术的兴趣,鼓励探索数字世界的无限可能。
242 5
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
153 0
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
273 2
|
存储 算法 搜索推荐
Python进阶必备:字典树Trie与后缀树Suffix Array,效率提升的神器!
在Python编程中,掌握高效的数据结构对于提升程序性能至关重要。本文将深入探讨两种强大的字符串处理数据结构——字典树(Trie)与后缀数组(Suffix Array)。字典树,又称前缀树,适用于自动补全和拼写检查等功能。例如,在文本编辑器中实现自动补全时,字典树能够即时提供单词补全选项。后缀数组则用于存储字符串的所有后缀并按字典序排序,结合最长公共前缀(LCP)数组,可以高效解决许多字符串问题,如查找最长重复子串等。通过实际案例,我们将展示这两种数据结构的强大功能,帮助你在Python编程中更进一步。
273 2
|
存储 开发者 Python
从理论到实践:Python中Trie树与Suffix Tree的完美结合,开启编程新篇章!
在编程领域,高效的数据结构对于解决问题至关重要。本文通过一个案例分析,介绍如何在Python中结合使用Trie树(前缀树)和Suffix Tree(后缀树)。案例聚焦于开发具备高效拼写检查和文本相似度检测功能的文本编辑器。首先,通过构建Trie树快速检查单词是否存在;接着,利用Suffix Tree检测文本相似度。尽管Python标准库未直接提供Suffix Tree,但可通过第三方库或自定义实现。本文展示了高级数据结构在实际应用中的强大功能,并强调了理论与实践相结合的重要性。
187 1
|
存储 算法 Python
逆袭之路:掌握Python字典树Trie与后缀树,成为技术圈的耀眼新星!
在编程的征途上,每个人都渴望成为那个能够独当一面、解决复杂问题的技术高手。而掌握高级数据结构,如字典树(Trie)与后缀树(Suffix Tree),无疑是你逆袭路上的重要一步。这些数据结构不仅能够提升你的编码技能,还能让你在解决特定问题时游刃有余,从而在技术圈中脱颖而出,成为那颗耀眼的新星。
147 1
|
机器学习/深度学习 数据采集 算法
一个 python + 数据预处理+随机森林模型 (案列)
本文介绍了一个使用Python进行数据预处理和构建随机森林模型的实际案例。首先,作者通过删除不必要的列和特征编码对数据进行了预处理,然后应用随机森林算法进行模型训练,通过GridSearchCV优化参数,最后展示了模型的评估结果。
423 0
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
287 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
313 104

推荐镜像

更多