R语言实现 Copula 算法建模依赖性案例分析报告

简介: R语言实现 Copula 算法建模依赖性案例分析报告

copula是将多变量分布函数与其边际分布函数耦合的函数,通常称为边缘。Copula是建模和模拟相关随机变量的绝佳工具。Copula的主要吸引力在于,通过使用它们,你可以分别对相关结构和边缘(即每个随机变量的分布)进行建模。


copulas如何工作

首先,让我们了解copula的工作方式。

 set.seed(100)

m < -  3
n < -  2000
 
z < -  mvrnorm(n,mu = rep(0,m),Sigma = sigma,empirical = T)

我们使用cor()和配对图检查样本相关性。

pairs.panels(Z)

          [,1] [,2] [,3]
[1,] 1.0000000 0.3812244 0.1937548
[2,] 0.3812244 1.0000000 -0.7890814
[3,] 0.1937548 -0.7890814 1.0000000


 



pairs.panels(U)

这是包含新随机变量的配对图u


我们可以绘制矢量的3D图表示u

 


现在,作为最后一步,我们只需要选择边缘并应用它。我选择了边缘为Gamma,Beta和Student,并使用下面指定的参数。

x1 < -  qgamma(u [,1],shape = 2,scale = 1)
x2 < -  qbeta(u [,2],2,2)
x3 < -  qt(u [,3],df = 5)

下面是我们模拟数据的3D图。

 

df < -  cbind(x1,x2,x3)
pairs.panels(DF)
 
          x1 x2 x3
x1 1.0000000 0.3812244 0.1937548
x2 0.3812244 1.0000000 -0.7890814
x3 0.1937548 -0.7890814 1.0000000

这是随机变量的配对图:


使用copula

让我们使用copula复制上面的过程。


现在我们已经通过copula(普通copula)指定了依赖结构并设置了边缘,mvdc()函数生成了所需的分布。然后我们可以使用rmvdc()函数生成随机样本。


colnames(Z2)< -  c(“x1”,“x2”,“x3”)pairs.panels(Z2)

模拟数据当然非常接近之前的数据,显示在下面的配对图中:


简单的应用示例

现在为现实世界的例子。我们将拟合两个股票 ,并尝试使用copula模拟 。

让我们在R中加载 :

cree < -  read.csv('cree_r.csv',header = F)$ V2
yahoo < -  read.csv('yahoo_r.csv',header = F)$ V2

在直接进入copula拟合过程之前,让我们检查两个股票收益之间的相关性并绘制回归线:


我们可以看到 正相关 :


在上面的第一个例子中,我选择了一个正态的copula模型,但是,当将这些模型应用于实际数据时,应该仔细考虑哪些更适合数据。例如,许多copula更适合建模非对称相关,其他强调尾部相关性等等。我对股票回报的猜测是,t-copula应该没问题,但是猜测肯定是不够的。本质上, 允许我们通过函数使用BIC和AIC执行copula选择 :


  pobs(as.matrix(cbind(cree,yahoo)))[,1]
  selectedCopula
 

$ PAR
[1] 0.4356302

$ PAR2
[1] 3.844534

拟合算法确实选择了t-copula并为我们估计了参数。

让我们尝试拟合建议的模型,并检查参数拟合。


t.cop
set.seed(500)
m < -  pobs(as.matrix(cbind(cree,yahoo)))
 
COEF(FIT)

  rho.1 df
0.43563 3.84453 

我们来看看我们刚估计的copula的密度


rho < -  coef(fit)[1]
df < -  coef(fit)[2]
 


现在我们只需要建立Copula并从中抽取3965个随机样本。

rCopula(3965,tCopula(  = 2, ,df = df))
 

          [,1] [,2]
[1,] 1.0000000 0.3972454
[2,] 0.3972454 1.0000000

这是包含的样本的图:

 

t-copula通常适用于在极值(分布的尾部)中存在高度相关性的现象。


现在我们正面临困难:对边缘进行建模。为简单起见,我们将假设正态分布 。因此,我们估计边际的参数。


直方图显示如下:

现在我们在函数中应用copula,从生成的多变量分布中获取模拟观测值。最后,我们将模拟结果与原始数据进行比较。


这是在假设正常边缘和依赖结构的t-copula的情况下数据的最终散点图:


正如您所看到的,t-copula导致结果接近实际观察结果 。


让我们尝试df=1df=8:

 

显然,该参数df对于确定分布的形状非常重要。随着df增加,t-copula倾向于高斯copula。

相关文章
|
1月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
2月前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
49 6
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
4月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
4月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
79 3
|
4月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。