我将建立道琼斯工业平均指数(DJIA)日交易量对数比的ARMA-GARCH模型。
获取数据
lod(file='DowEnvironment.RData')
日交易量
每日交易量内发生的 变化。
plot(dj_vol)
首先,我们验证具有常数均值的线性回归在统计上是显着的。
在休息时间= 6时达到最小BIC。
以下是道琼斯日均交易量与水平变化(红线) 。
summary(bp_dj_vol) ## ## Optimal (m+1)-segment partition: ## ## Call: ## breakpoints.formula(formula = dj_vol ~ 1, h = 0.1) ## ## Breakpoints at observation number: ## ## m = 1 2499 ## m = 2 896 2499 ## m = 3 626 1254 2499 ## m = 4 342 644 1254 2499 ## m = 5 342 644 1219 1649 2499 ## m = 6 320 622 924 1251 1649 2499 ## m = 7 320 622 924 1251 1692 2172 2499 ## m = 8 320 622 924 1251 1561 1863 2172 2499 ## ## Corresponding to breakdates: ## ## m = 1 ## m = 2 0.296688741721854 ## m = 3 0.207284768211921 ## m = 4 0.113245033112583 0.213245033112583 ## m = 5 0.113245033112583 0.213245033112583 ## m = 6 0.105960264900662 0.205960264900662 0.305960264900662 ## m = 7 0.105960264900662 0.205960264900662 0.305960264900662 ## m = 8 0.105960264900662 0.205960264900662 0.305960264900662 ## ## m = 1 ## m = 2 ## m = 3 0.41523178807947 ## m = 4 0.41523178807947 ## m = 5 0.40364238410596 0.546026490066225 ## m = 6 0.414238410596027 0.546026490066225 ## m = 7 0.414238410596027 0.560264900662252 ## m = 8 0.414238410596027 0.516887417218543 0.616887417218543 ## ## m = 1 0.827483443708609 ## m = 2 0.827483443708609 ## m = 3 0.827483443708609 ## m = 4 0.827483443708609 ## m = 5 0.827483443708609 ## m = 6 0.827483443708609 ## m = 7 0.719205298013245 0.827483443708609 ## m = 8 0.719205298013245 0.827483443708609 ## ## Fit: ## ## m 0 1 2 3 4 5 6 ## RSS 3.872e+19 2.772e+19 1.740e+19 1.547e+19 1.515e+19 1.490e+19 1.475e+19 ## BIC 1.206e+05 1.196e+05 1.182e+05 1.179e+05 1.178e+05 1.178e+05 1.178e+05 ## ## m 7 8 ## RSS 1.472e+19 1.478e+19 ## BIC 1.178e+05 1.178e+05 lwd = c(3,1), col = c("red", "black"))
每日交易量对数比率模型
每日交易量对数比率:
plot(dj_vol_log_ratio)
异常值检测
下面我们将原始时间序列与调整后的异常值进行比较。
相关图
pacf(dj_vol_log_ratio)
上图可能表明 ARMA(p,q)模型的p和q> 0.
单位根测试
我们 提供Augmented Dickey-Fuller测试。
根据 测试统计数据与临界值进行比较,我们拒绝单位根存在的零假设。
ARMA模型
我们现在确定时间序列的ARMA结构,以便对结果残差运行ARCH效果测试。
ma1系数在统计上不显着。因此,我们尝试使用以下ARMA(2,3)模型。
所有系数都具有统计显着性,AIC低于第一个模型。然后我们尝试使用ARMA(1,2)。
## ## Call: ## arima(x = dj_vol_log_ratio, order = c(1, 0, 2), include.mean = FALSE) ## ## Coefficients: ## ar1 ma1 ma2 ## 0.6956 -1.3183 0.3550 ## s.e. 0.0439 0.0518 0.0453 ## ## sigma^2 estimated as 0.06598: log likelihood = -180.92, aic = 367.84 ## z test of coefficients: ## ## Estimate Std. Error z value Pr(>|z|) ## ar1 0.695565 0.043874 15.8537 < 2.2e-16 *** ## ma1 -1.318284 0.051787 -25.4557 < 2.2e-16 *** ## ma2 0.355015 0.045277 7.8409 4.474e-15 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
该模型在集合中具有最高的AIC,并且所有系数具有统计显着性。
我们还可以尝试 进一步验证。
eacf(dj_vol_log_ratio) ## AR / MA ## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ## 0 xooxxooxooxooo ## 1 xxoxoooxooxooo ## 2 xxxxooooooxooo ## 3 xxxxooooooxooo ## 4 xxxxxoooooxooo ## 5 xxxxoooooooooo ## 6 xxxxxoxooooooo ## 7 xxxxxooooooooo
## ## Call: ## arima(x = dj_vol_log_ratio, order = c(2, 0, 2), include.mean = FALSE) ## ## Coefficients: ## ar1 ar2 ma1 ma2 ## 0.7174 -0.0096 -1.3395 0.3746 ## s.e. 0.1374 0.0560 0.1361 0.1247 ## ## sigma^2 estimated as 0.06598: log likelihood = -180.9, aic = 369.8 ## z test of coefficients: ## ## Estimate Std. Error z value Pr(>|z|) ## ar1 0.7173631 0.1374135 5.2205 1.785e-07 *** ## ar2 -0.0096263 0.0560077 -0.1719 0.863536 ## ma1 -1.3394720 0.1361208 -9.8403 < 2.2e-16 *** ## ma2 0.3746317 0.1247117 3.0040 0.002665 ** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ar2系数在统计上不显着。
## ## Call: ## arima(x = dj_vol_log_ratio, order = c(1, 0, 3), include.mean = FALSE) ## ## Coefficients: ## ar1 ma1 ma2 ma3 ## 0.7031 -1.3253 0.3563 0.0047 ## s.e. 0.0657 0.0684 0.0458 0.0281 ## ## sigma^2 estimated as 0.06598: log likelihood = -180.9, aic = 369.8 ## z test of coefficients: ## ## Estimate Std. Error z value Pr(>|z|) ## ar1 0.7030934 0.0656902 10.7032 < 2.2e-16 *** ## ma1 -1.3253176 0.0683526 -19.3894 < 2.2e-16 *** ## ma2 0.3563425 0.0458436 7.7730 7.664e-15 *** ## ma3 0.0047019 0.0280798 0.1674 0.867 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma3系数在统计上不显着。
ARCH效果测试
如果ARCH效应对于我们的时间序列的残差具有统计显着性,则需要GARCH模型。
我们测试候选平均模型ARMA(2,3)。
## ARCH LM-test; Null hypothesis: no ARCH effects ## ## data: resid_dj_vol_log_ratio - mean(resid_dj_vol_log_ratio) ## Chi-squared = 78.359, df = 12, p-value = 8.476e-12
根据报告的p值,我们拒绝无ARCH效应的零假设。
让我们看一下残差相关图。
par(mfrow=c(1,2))
acf(resid_dj_vol_log_ratio)
pacf(resid_dj_vol_log_ratio)
我们测试了第二个候选平均模型ARMA(1,2)。
## ARCH LM-test; Null hypothesis: no ARCH effects ## ## data: resid_dj_vol_log_ratio - mean(resid_dj_vol_log_ratio) ## Chi-squared = 74.768, df = 12, p-value = 4.065e-11
根据报告的p值,我们拒绝无ARCH效应的零假设。
让我们看一下残差相关图。
par(mfrow=c(1,2))
acf(resid_dj_vol_log_ratio)
pacf(resid_dj_vol_log_ratio)
要检查 对数比率内的不对称性,将显示汇总统计数据和密度图。
## DJI.Volume ## nobs 3019.000000 ## NAs 0.000000 ## Minimum -2.301514 ## Maximum 2.441882 ## 1. Quartile -0.137674 ## 3. Quartile 0.136788 ## Mean -0.000041 ## Median -0.004158 ## Sum -0.124733 ## SE Mean 0.005530 ## LCL Mean -0.010885 ## UCL Mean 0.010802 ## Variance 0.092337 ## Stdev 0.303869 ## Skewness -0.182683 ## Kurtosis 9.463384 plot(density(dj_vol_log_ratio))
因此,对于每日交易量对数比,还将提出eGARCH模型。
为了将结果与两个候选平均模型ARMA(1,2)和ARMA(2,3)进行比较,我们进行了两次拟合
ARMA-GARCH:ARMA(1,2)+ eGARCH(1,1)
所有系数都具有统计显着性。然而,基于上面报道的标准化残差p值的加权Ljung-Box检验,我们拒绝了对于本模型没有残差相关性的零假设。
ARMA-GARCH:ARMA(2,3)+ eGARCH(1,1)
## ## *---------------------------------* ## * GARCH Model Fit * ## *---------------------------------* ## ## Conditional Variance Dynamics ## ----------------------------------- ## GARCH Model : eGARCH(1,1) ## Mean Model : ARFIMA(2,0,3) ## Distribution : sstd ## ## Optimal Parameters ## ------------------------------------ ## Estimate Std. Error t value Pr(>|t|) ## ar1 -0.18607 0.008580 -21.6873 0.0e+00 ## ar2 0.59559 0.004596 129.5884 0.0e+00 ## ma1 -0.35619 0.013512 -26.3608 0.0e+00 ## ma2 -0.83010 0.004689 -177.0331 0.0e+00 ## ma3 0.26277 0.007285 36.0678 0.0e+00 ## omega -1.92262 0.226738 -8.4795 0.0e+00 ## alpha1 0.14382 0.033920 4.2401 2.2e-05 ## beta1 0.31060 0.079441 3.9098 9.2e-05 ## gamma1 0.43137 0.043016 10.0281 0.0e+00 ## skew 1.32282 0.031382 42.1523 0.0e+00 ## shape 3.48939 0.220787 15.8043 0.0e+00 ## ## Robust Standard Errors: ## Estimate Std. Error t value Pr(>|t|) ## ar1 -0.18607 0.023940 -7.7724 0.000000 ## ar2 0.59559 0.022231 26.7906 0.000000 ## ma1 -0.35619 0.024244 -14.6918 0.000000 ## ma2 -0.83010 0.004831 -171.8373 0.000000 ## ma3 0.26277 0.030750 8.5453 0.000000 ## omega -1.92262 0.266462 -7.2154 0.000000 ## alpha1 0.14382 0.032511 4.4239 0.000010 ## beta1 0.31060 0.095329 3.2582 0.001121 ## gamma1 0.43137 0.047092 9.1602 0.000000 ## skew 1.32282 0.037663 35.1225 0.000000 ## shape 3.48939 0.223470 15.6146 0.000000 ## ## LogLikelihood : 356.4994 ## ## Information Criteria ## ------------------------------------ ## ## Akaike -0.22888 ## Bayes -0.20698 ## Shibata -0.22891 ## Hannan-Quinn -0.22101 ## ## Weighted Ljung-Box Test on Standardized Residuals ## ------------------------------------ ## statistic p-value ## Lag[1] 0.7678 0.38091 ## Lag[2*(p+q)+(p+q)-1][14] 7.7336 0.33963 ## Lag[4*(p+q)+(p+q)-1][24] 17.1601 0.04972 ## d.o.f=5 ## H0 : No serial correlation ## ## Weighted Ljung-Box Test on Standardized Squared Residuals ## ------------------------------------ ## statistic p-value ## Lag[1] 0.526 0.4683 ## Lag[2*(p+q)+(p+q)-1][5] 1.677 0.6965 ## Lag[4*(p+q)+(p+q)-1][9] 2.954 0.7666 ## d.o.f=2 ## ## Weighted ARCH LM Tests ## ------------------------------------ ## Statistic Shape Scale P-Value ## ARCH Lag[3] 1.095 0.500 2.000 0.2955 ## ARCH Lag[5] 1.281 1.440 1.667 0.6519 ## ARCH Lag[7] 1.940 2.315 1.543 0.7301 ## ## Nyblom stability test ## ------------------------------------ ## Joint Statistic: 5.3764 ## Individual Statistics: ## ar1 0.12923 ## ar2 0.20878 ## ma1 1.15005 ## ma2 1.15356 ## ma3 0.97487 ## omega 2.04688 ## alpha1 0.09695 ## beta1 2.01026 ## gamma1 0.18039 ## skew 0.38131 ## shape 2.40996 ## ## Asymptotic Critical Values (10% 5% 1%) ## Joint Statistic: 2.49 2.75 3.27 ## Individual Statistic: 0.35 0.47 0.75 ## ## Sign Bias Test ## ------------------------------------ ## t-value prob sig ## Sign Bias 1.4929 0.13556 ## Negative Sign Bias 0.6317 0.52766 ## Positive Sign Bias 2.4505 0.01432 ** ## Joint Effect 6.4063 0.09343 * ## ## ## Adjusted Pearson Goodness-of-Fit Test: ## ------------------------------------ ## group statistic p-value(g-1) ## 1 20 17.92 0.5278 ## 2 30 33.99 0.2395 ## 3 40 44.92 0.2378 ## 4 50 50.28 0.4226 ## ## ## Elapsed time : 1.660402
所有系数都具有统计显着性。没有找到标准化残差或标准化平方残差的相关性。模型可以正确捕获所有ARCH效果。调整后的Pearson拟合优度检验不拒绝零假设,即标准化残差的经验分布和所选择的理论分布是相同的。然而:
*对于其中一些模型参数随时间变化恒定的Nyblom稳定性测试零假设被拒绝
par(mfrow=c(2,2))
plot(garchfit, which=8)
plot(garchfit, which=9)
plot(garchfit, which=10)
plot(garchfit, which=11)
我们用平均模型拟合(红线)和条件波动率(蓝线)显示原始道琼斯日均交易量对数时间序列。
对数波动率分析
以下是我们的模型ARMA(2,2)+ eGARCH(1,1)产生的条件波动率图。
plot(cond_volatility)
显示了按年度的条件波动率的线图。
par(mfrow=c(6,2))
pl <- lapply(2007:2018, function(x) { plot(cond_volatility[as.character(x)], main = "DJIA Daily Volume Log-ratio conditional volatility")})
pl
显示了按年度计算的条件波动率框图。
结论
我们研究了基本统计指标,如平均值,偏差,偏度和峰度,以了解多年来价值观的差异,以及价值分布对称性和尾部。从这些摘要开始,我们获得了平均值,中位数,偏度和峰度指标的有序列表,以更好地突出多年来的差异。
密度图可以了解我们的经验样本分布的不对称性和尾部性。
对于对数回报,我们构建了ARMA-GARCH模型(指数GARCH,特别是作为方差模型),以获得条件波动率。同样,可视化作为线和框图突出显示了年内和年之间的条件波动率变化。这种调查的动机是,波动率是变化幅度的指标,用简单的词汇表示,并且是应用于资产的对数收益时的基本风险度量。有几种类型的波动性(有条件的,隐含的,实现的波动率)。
交易量可以被解释为衡量市场活动幅度和投资者兴趣的指标。计算交易量指标(包括波动率)可以了解这种活动/利息水平如何随时间变化。