R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告

简介: R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告

维度降低有两个主要用例:数据探索和机器学习。它对于数据探索很有用,因为维数减少到几个维度(例如2或3维)允许可视化样本。然后可以使用这种可视化来从数据获得见解(例如,检测聚类并识别异常值)。对于机器学习,降维是有用的,因为在拟合过程中使用较少的特征时,模型通常会更好地概括。

在这篇文章中,我们将研究三维降维技术:

  • 主成分分析(PCA):最流行的降维方法
  • 内核PCA:PCA的一种变体,允许非线性
  • t-SNE t分布随机邻域嵌入:最近开发的非线性降维技术

这些方法之间的关键区别在于PCA输出旋转矩阵,可以应用于任何其他矩阵以转换数据。


加载数据集

 我们可以通过以下方式加载数据集:


df <- read.csv(textConnection(f), header=T)
# select characterics of the whiskeys
features <- c("Body", "Sweetness", "Smoky",
            "Medicinal", "Tobacco", "Honey",
            "Spicy", "Winey", "Nutty",
            "Malty", "Fruity", "Floral")
feat.df <- df[, c("Distillery", features)]
  • 关于结果的假设

在我们开始减少数据的维度之前,我们应该考虑数据。

由于来自邻近酿酒厂的威士忌使用类似的蒸馏技术和资源,他们的威士忌也有相似之处。
为了验证这一假设,我们将测试来自不同地区的酿酒厂之间威士忌特征的平均表达是否不同。为此,我们将进行MANOVA测试:


###           Df Pillai approx F num Df den Df    Pr(>F)    
## Region     5 1.2582   2.0455     60    365 3.352e-05 ***
## Residuals 80                                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

检验统计量在5%水平上是显着的,因此我们可以拒绝零假设(区域对特征没有影响)。


酿酒厂的地理位置

由于区域性对威士忌起着重要作用,我们将通过绘制其纬度和经度来探索数据集中的酿酒厂所在的位置。以下苏格兰威士忌地区存在:





PCA

使用PCA可视化威士忌数据集



在第二个图中,我们将绘制酿酒厂的标签,以便我们可以更详细地解释聚类。


总的来说,主要成分似乎反映了以下特征:

  • PC1表示味道强度即烟熏味,药用味(如Laphroaig或Lagavulin)与平滑味道(如Auchentoshan或Aberlour)
  • PC2表示味道复杂性即味道特征(例如Glenfiddich或Auchentoshan)与更具特色的味道特征(例如Glendronach或Macallan)



##   Cluster Campbeltown Highlands Islands Islay Lowlands Speyside
## 1       1           2        17       2     2        0       19
## 2       2           0         8       2     1        3       22
## 3       3           0         2       2     4        0        0

对集群的合理解释如下:

  • 群集1: 复合威士忌,主要来自Highlands / Speyside
  • 群集2: 均衡的威士忌,主要来自斯佩塞德和高地
  • 群集3: 烟熏威士忌,主要来自艾莱岛

可视化有两个有趣的观察结果:

  • Oban和Clynelish是唯一一个产生类似于艾莱岛酿酒厂口味的高地酿酒厂。
  • Highland和Speyside威士忌主要在一个方面不同。在一个极端是平滑,均衡的威士忌,如Glenfiddich。在另一个极端,威士忌是具有更有特色的味道,如麦卡伦。

这包含了我们对PCA的可视化研究。我们将在本文末尾研究使用PCA进行预测。


核PCA

内核PCA(KPCA)是PCA的扩展,它利用了内核函数,这些函数在支持向量机上是众所周知的。通过将数据映射到再现内核Hilbert空间,即使它们不是线性可分的,也可以分离数据。


在R中使用KPCA

要执行KPCA,我们使用包中的kpca函数kernlab


其中σσ是反向内核宽度。使用此内核,可以按如下方式减少维数:


检索到新维度后,我们现在可以在转换后的空间中可视化数据:


就可视化而言,结果比我们使用常规PCR获得的结果稍微粗糙一些。尽管如此,来自艾莱岛的威士忌分离得很好,我们可以看到一群斯佩塞特威士忌,而高地威士忌则高度传播。


T-SNE

t-SNE已成为一种非常流行的数据可视化方法。


使用t-SNE可视化数据

在这里,我们将威士忌数据集的维度降低到两个维度:

与PCA相比,簇的分离更加清晰,特别是对于簇1和簇2。

对于t-SNE,我们必须进行解释:

  • V1表示味道复杂性。这里的异常值是右侧的烟熏艾莱威士忌(例如Lagavulin)和左侧复杂的高地威士忌(例如麦卡伦)。
  • V2表示烟熏/药用味道。

使用PCA进行监督学习

PCA是独立完成的,这一点至关重要。因此,需要遵循以下方法:

  1. 在测试数据集上执行PCA并在转换后的数据上训练模型。
  2. 将训练数据中的学习PCA变换应用于测试数据集,并评估模型在变换数据上的性能。

为此,我们将使用ķ最近邻模型。此外,因为所有的变量是在特征空间小[0,4][0,4]。我们必须优化kk,因此我们还预留了用于确定此参数的验证集。


PCA转换

首先,我们编写一些函数来验证预测的性能。



get.accuracy <- <strong>function</strong>(preds, labels) {
    correct.idx <- which(preds == labels)
    accuracy <- length(correct.idx) / length(labels)
    return (accuracy)
}

在下面的代码中,我们将对训练数据执行PCA并研究解释的方差以选择合适的维数


##         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## N_dim      1    2    3    4    5    6    7    8    9    10    11    12
## Cum_Var   22   41   52   63   72   79   85   90   94    97    99   100

由于有足够百分比的方差用3维解释,我们将使用该值来设置训练,测试和验证数据集。

现在我们已经将训练,验证和测试集转换为PCA空间,我们可以使用kk最近邻居。


## [1] "PCA+KNN accuracy for k = 9 is: 0.571"

让我们研究一下使用PCA的模型是否优于基于原始数据的模型:



## [1] "KNN accuracy for k = 7 is: 0.524"

 # variances of whiskeys characteristics 
print(diag(var(data))) 
##      Body Sweetness     Smoky Medicinal   Tobacco     Honey     Spicy 
## 0.8656635 0.5145007 0.7458276 0.9801642 0.1039672 0.7279070 0.6157319 
##     Winey     Nutty     Malty    Fruity    Floral 
## 0.8700410 0.6752394 0.3957592 0.6075239 0.7310534

现在我们只能根据他们的口味确定苏格兰威士忌的六个区域,但问题是我们是否仍能获得更好的表现。我们知道很难预测数据集中代表性不足的苏格兰地区。那么,如果我们将自己局限于更少的地区,会发生什么?

  • 岛威士忌与艾莱岛威士忌组合在一起
  • Lowland / Campbeltown威士忌与Highland威士忌组合在一起

通过这种方式,问题减少到三个区域:Island / Islay威士忌,Highland / Lowland / Campbeltown威士忌和Speyside威士忌。再次进行分析:


## [1] "PCA+KNN accuracy for k = 13 is: 0.619"

我们可以得出61.9%的准确度,我们可以得出结论,将我们样品较少的威士忌区域分组确实是值得的。


KPCA用于监督学习

应用KPCA进行预测并不像应用PCA那样简单。在PCA中,特征向量是在输入空间中计算的,但在KPCA中,特征向量来自核心希尔伯特空间。因此,当我们不知道所使用的显式映射函数ϕϕ,不可能简单地转换新数据点。



# NB: this would overestimate the actual performanceaccuracy <- get.
accuracy(preds.kpca, df$Region[samp.test])

摘要

在这里,我们看到了如何使用PCA,KPCA和t-SNE来降低数据集的维数。PCA是一种适用于可视化和监督学习的线性方法。KPCA是一种非线性降维技术。t-SNE是一种更新的非线性方法,擅长可视化数据,但缺乏PCA的可解释性和稳健性。

这可能表明以下两点之一:

  1. 尝试新的的威士忌仍有很大的潜力。
  2. 有很多种味道的组合是可能的,并且很好地结合在一起。

我倾向于选择第二种选择。为什么?在PCA图中,右下角是没有样本所在的最大区域。看着靠近这个区域的威士忌,我们发现那些是y轴上的Macallan和x轴上的Lagavulin。麦卡伦以其复杂的口味而闻名,Lagavulin以其烟熏味而闻名。

位于二维PCA空间右下方的威士忌将同时具有两种特性:它既复杂又烟熏。我猜这种具有两种特性的威士忌对于口感来说太过分了。


相关文章
|
23天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
54 1
|
1月前
|
存储 编解码 负载均衡
数据分片算法
【10月更文挑战第25天】不同的数据分片算法适用于不同的应用场景和数据特点,在实际应用中,需要根据具体的业务需求、数据分布情况、系统性能要求等因素综合考虑,选择合适的数据分片算法,以实现数据的高效存储、查询和处理。
|
1月前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
机器学习/深度学习 人工智能 算法
"拥抱AI规模化浪潮:从数据到算法,解锁未来无限可能,你准备好迎接这场技术革命了吗?"
【10月更文挑战第14天】本文探讨了AI规模化的重要性和挑战,涵盖数据、算法、算力和应用场景等方面。通过使用Python和TensorFlow的示例代码,展示了如何训练并应用一个基本的AI模型进行图像分类,强调了AI规模化在各行业的广泛应用前景。
36 5
|
1月前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
55 0
|
2月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
2月前
|
人工智能 算法 前端开发
无界批发零售定义及无界AI算法,打破传统壁垒,累积数据流量
“无界批发与零售”是一种结合了批发与零售的商业模式,通过后端逻辑、数据库设计和前端用户界面实现。该模式支持用户注册、登录、商品管理、订单处理、批发与零售功能,并根据用户行为计算信用等级,确保交易安全与高效。
|
2月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
2月前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。