PyTorch 2.2 中文官方教程(十一)(4)

简介: PyTorch 2.2 中文官方教程(十一)

PyTorch 2.2 中文官方教程(十一)(3)https://developer.aliyun.com/article/1482554

批量归一化的反向传播公式实现

Batch Norm 有两种模式:训练模式和eval模式。在训练模式下,样本统计量是输入的函数。在eval模式下,我们使用保存的运行统计量,这些统计量不是输入的函数。这使得非训练模式的反向传播显著简化。下面我们只实现和测试训练模式的情况。

def unsqueeze_all(t):
    # Helper function to ``unsqueeze`` all the dimensions that we reduce over
    return t[None, :, None, None]
def batch_norm_backward(grad_out, X, sum, sqrt_var, N, eps):
    # We use the formula: ``out = (X - mean(X)) / (sqrt(var(X)) + eps)``
    # in batch norm 2D forward. To simplify our derivation, we follow the
    # chain rule and compute the gradients as follows before accumulating
    # them all into a final grad_input.
    #  1) ``grad of out wrt var(X)`` * ``grad of var(X) wrt X``
    #  2) ``grad of out wrt mean(X)`` * ``grad of mean(X) wrt X``
    #  3) ``grad of out wrt X in the numerator`` * ``grad of X wrt X``
    # We then rewrite the formulas to use as few extra buffers as possible
    tmp = ((X - unsqueeze_all(sum) / N) * grad_out).sum(dim=(0, 2, 3))
    tmp *= -1
    d_denom = tmp / (sqrt_var + eps)**2  # ``d_denom = -num / denom**2``
    # It is useful to delete tensors when you no longer need them with ``del``
    # For example, we could've done ``del tmp`` here because we won't use it later
    # In this case, it's not a big difference because ``tmp`` only has size of (C,)
    # The important thing is avoid allocating NCHW-sized tensors unnecessarily
    d_var = d_denom / (2 * sqrt_var)  # ``denom = torch.sqrt(var) + eps``
    # Compute ``d_mean_dx`` before allocating the final NCHW-sized grad_input buffer
    d_mean_dx = grad_out / unsqueeze_all(sqrt_var + eps)
    d_mean_dx = unsqueeze_all(-d_mean_dx.sum(dim=(0, 2, 3)) / N)
    # ``d_mean_dx`` has already been reassigned to a C-sized buffer so no need to worry
    # ``(1) unbiased_var(x) = ((X - unsqueeze_all(mean))**2).sum(dim=(0, 2, 3)) / (N - 1)``
    grad_input = X * unsqueeze_all(d_var * N)
    grad_input += unsqueeze_all(-d_var * sum)
    grad_input *= 2 / ((N - 1) * N)
    # (2) mean (see above)
    grad_input += d_mean_dx
    # (3) Add 'grad_out / <factor>' without allocating an extra buffer
    grad_input *= unsqueeze_all(sqrt_var + eps)
    grad_input += grad_out
    grad_input /= unsqueeze_all(sqrt_var + eps)  # ``sqrt_var + eps > 0!``
    return grad_input
class BatchNorm(torch.autograd.Function):
    @staticmethod
    def forward(ctx, X, eps=1e-3):
        # Don't save ``keepdim`` values for backward
        sum = X.sum(dim=(0, 2, 3))
        var = X.var(unbiased=True, dim=(0, 2, 3))
        N = X.numel() / X.size(1)
        sqrt_var = torch.sqrt(var)
        ctx.save_for_backward(X)
        ctx.eps = eps
        ctx.sum = sum
        ctx.N = N
        ctx.sqrt_var = sqrt_var
        mean = sum / N
        denom = sqrt_var + eps
        out = X - unsqueeze_all(mean)
        out /= unsqueeze_all(denom)
        return out
    @staticmethod
    @once_differentiable
    def backward(ctx, grad_out):
        X, = ctx.saved_tensors
        return batch_norm_backward(grad_out, X, ctx.sum, ctx.sqrt_var, ctx.N, ctx.eps) 

使用gradcheck进行测试

a = torch.rand(1, 2, 3, 4, requires_grad=True, dtype=torch.double)
torch.autograd.gradcheck(BatchNorm.apply, (a,), fast_mode=False) 
True 

融合卷积和批量归一化

现在大部分工作已经完成,我们可以将它们组合在一起。请注意,在(1)中我们只保存一个用于反向传播的缓冲区,但这也意味着我们在(5)中重新计算卷积的前向传播。还请注意,在(2)、(3)、(4)和(6)中,代码与上面的示例完全相同。

class FusedConvBN2DFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, X, conv_weight, eps=1e-3):
        assert X.ndim == 4  # N, C, H, W
        # (1) Only need to save this single buffer for backward!
        ctx.save_for_backward(X, conv_weight)
        # (2) Exact same Conv2D forward from example above
        X = F.conv2d(X, conv_weight)
        # (3) Exact same BatchNorm2D forward from example above
        sum = X.sum(dim=(0, 2, 3))
        var = X.var(unbiased=True, dim=(0, 2, 3))
        N = X.numel() / X.size(1)
        sqrt_var = torch.sqrt(var)
        ctx.eps = eps
        ctx.sum = sum
        ctx.N = N
        ctx.sqrt_var = sqrt_var
        mean = sum / N
        denom = sqrt_var + eps
        # Try to do as many things in-place as possible
        # Instead of `out = (X - a) / b`, doing `out = X - a; out /= b`
        # avoids allocating one extra NCHW-sized buffer here
        out = X - unsqueeze_all(mean)
        out /= unsqueeze_all(denom)
        return out
    @staticmethod
    def backward(ctx, grad_out):
        X, conv_weight, = ctx.saved_tensors
        # (4) Batch norm backward
        # (5) We need to recompute conv
        X_conv_out = F.conv2d(X, conv_weight)
        grad_out = batch_norm_backward(grad_out, X_conv_out, ctx.sum, ctx.sqrt_var,
                                       ctx.N, ctx.eps)
        # (6) Conv2d backward
        grad_X, grad_input = convolution_backward(grad_out, X, conv_weight)
        return grad_X, grad_input, None, None, None, None, None 

下一步是将我们的功能变体包装在一个有状态的 nn.Module 中

import torch.nn as nn
import math
class FusedConvBN(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, exp_avg_factor=0.1,
                 eps=1e-3, device=None, dtype=None):
        super(FusedConvBN, self).__init__()
        factory_kwargs = {'device': device, 'dtype': dtype}
        # Conv parameters
        weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
        self.conv_weight = nn.Parameter(torch.empty(*weight_shape, **factory_kwargs))
        # Batch norm parameters
        num_features = out_channels
        self.num_features = num_features
        self.eps = eps
        # Initialize
        self.reset_parameters()
    def forward(self, X):
        return FusedConvBN2DFunction.apply(X, self.conv_weight, self.eps)
    def reset_parameters(self) -> None:
        nn.init.kaiming_uniform_(self.conv_weight, a=math.sqrt(5)) 

使用gradcheck验证我们的反向传播公式的正确性

weight = torch.rand(5, 3, 3, 3, requires_grad=True, dtype=torch.double)
X = torch.rand(2, 3, 4, 4, requires_grad=True, dtype=torch.double)
torch.autograd.gradcheck(FusedConvBN2DFunction.apply, (X, weight)) 
True 

测试我们的新层

使用FusedConvBN来训练一个基本网络。下面的代码经过了对这里示例的一些轻微修改:github.com/pytorch/examples/tree/master/mnist

import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
# Record memory allocated at the end of the forward pass
memory_allocated = [[],[]]
class Net(nn.Module):
    def __init__(self, fused=True):
        super(Net, self).__init__()
        self.fused = fused
        if fused:
            self.convbn1 = FusedConvBN(1, 32, 3)
            self.convbn2 = FusedConvBN(32, 64, 3)
        else:
            self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=False)
            self.bn1 = nn.BatchNorm2d(32, affine=False, track_running_stats=False)
            self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=False)
            self.bn2 = nn.BatchNorm2d(64, affine=False, track_running_stats=False)
        self.fc1 = nn.Linear(9216, 128)
        self.dropout = nn.Dropout(0.5)
        self.fc2 = nn.Linear(128, 10)
    def forward(self, x):
        if self.fused:
            x = self.convbn1(x)
        else:
            x = self.conv1(x)
            x = self.bn1(x)
        F.relu_(x)
        if self.fused:
            x = self.convbn2(x)
        else:
            x = self.conv2(x)
            x = self.bn2(x)
        F.relu_(x)
        x = F.max_pool2d(x, 2)
        F.relu_(x)
        x = x.flatten(1)
        x = self.fc1(x)
        x = self.dropout(x)
        F.relu_(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        if fused:
            memory_allocated[0].append(torch.cuda.memory_allocated())
        else:
            memory_allocated[1].append(torch.cuda.memory_allocated())
        return output
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 2 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    # Use inference mode instead of no_grad, for free improved test-time performance
    with torch.inference_mode():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {'batch_size': 2048}
test_kwargs = {'batch_size': 2048}
if use_cuda:
    cuda_kwargs = {'num_workers': 1,
                   'pin_memory': True,
                   'shuffle': True}
    train_kwargs.update(cuda_kwargs)
    test_kwargs.update(cuda_kwargs)
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True,
                          transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
                          transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) 
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/MNIST/raw/train-images-idx3-ubyte.gz
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|##########| 9912422/9912422 [00:00<00:00, 503661080.89it/s]
Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/MNIST/raw/train-labels-idx1-ubyte.gz
  0%|          | 0/28881 [00:00<?, ?it/s]
100%|##########| 28881/28881 [00:00<00:00, 115697892.86it/s]
Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw/t10k-images-idx3-ubyte.gz
  0%|          | 0/1648877 [00:00<?, ?it/s]
100%|##########| 1648877/1648877 [00:00<00:00, 346140710.54it/s]
Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz
  0%|          | 0/4542 [00:00<?, ?it/s]
100%|##########| 4542/4542 [00:00<00:00, 33421980.29it/s]
Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw 

内存使用比较

如果启用了 CUDA,则打印出融合为 True 和融合为 False 的内存使用情况。例如,在 NVIDIA GeForce RTX 3070 上运行,NVIDIA CUDA®深度神经网络库(cuDNN)8.0.5:融合峰值内存:1.56GB,未融合峰值内存:2.68GB

重要的是要注意,对于这个模型,峰值内存使用量可能会因使用的特定 cuDNN 卷积算法而异。对于较浅的模型,融合模型的峰值内存分配可能会超过未融合模型!这是因为为计算某些 cuDNN 卷积算法分配的内存可能足够高,以至于“隐藏”您期望在反向传递开始附近的典型峰值。

因此,我们还记录并显示在前向传递结束时分配的内存,以便近似,并展示我们确实为每个融合的conv-bn对分配了一个更少的缓冲区。

from statistics import mean
torch.backends.cudnn.enabled = True
if use_cuda:
    peak_memory_allocated = []
    for fused in (True, False):
        torch.manual_seed(123456)
        model = Net(fused=fused).to(device)
        optimizer = optim.Adadelta(model.parameters(), lr=1.0)
        scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
        for epoch in range(1):
            train(model, device, train_loader, optimizer, epoch)
            test(model, device, test_loader)
            scheduler.step()
        peak_memory_allocated.append(torch.cuda.max_memory_allocated())
        torch.cuda.reset_peak_memory_stats()
    print("cuDNN version:", torch.backends.cudnn.version())
    print()
    print("Peak memory allocated:")
    print(f"fused: {peak_memory_allocated[0]/1024**3:.2f}GB, unfused: {peak_memory_allocated[1]/1024**3:.2f}GB")
    print("Memory allocated at end of forward pass:")
    print(f"fused: {mean(memory_allocated[0])/1024**3:.2f}GB, unfused: {mean(memory_allocated[1])/1024**3:.2f}GB") 
Train Epoch: 0 [0/60000 (0%)]   Loss: 2.348735
Train Epoch: 0 [4096/60000 (7%)]        Loss: 7.435781
Train Epoch: 0 [8192/60000 (13%)]       Loss: 5.540894
Train Epoch: 0 [12288/60000 (20%)]      Loss: 2.274223
Train Epoch: 0 [16384/60000 (27%)]      Loss: 1.618885
Train Epoch: 0 [20480/60000 (33%)]      Loss: 1.515203
Train Epoch: 0 [24576/60000 (40%)]      Loss: 1.329276
Train Epoch: 0 [28672/60000 (47%)]      Loss: 1.184942
Train Epoch: 0 [32768/60000 (53%)]      Loss: 1.140154
Train Epoch: 0 [36864/60000 (60%)]      Loss: 1.174118
Train Epoch: 0 [40960/60000 (67%)]      Loss: 1.057965
Train Epoch: 0 [45056/60000 (73%)]      Loss: 0.976334
Train Epoch: 0 [49152/60000 (80%)]      Loss: 0.842555
Train Epoch: 0 [53248/60000 (87%)]      Loss: 0.690169
Train Epoch: 0 [57344/60000 (93%)]      Loss: 0.656998
Test set: Average loss: 0.4197, Accuracy: 8681/10000 (87%)
Train Epoch: 0 [0/60000 (0%)]   Loss: 2.349030
Train Epoch: 0 [4096/60000 (7%)]        Loss: 7.435157
Train Epoch: 0 [8192/60000 (13%)]       Loss: 5.443537
Train Epoch: 0 [12288/60000 (20%)]      Loss: 2.457860
Train Epoch: 0 [16384/60000 (27%)]      Loss: 1.739216
Train Epoch: 0 [20480/60000 (33%)]      Loss: 1.448296
Train Epoch: 0 [24576/60000 (40%)]      Loss: 1.312144
Train Epoch: 0 [28672/60000 (47%)]      Loss: 1.145347
Train Epoch: 0 [32768/60000 (53%)]      Loss: 1.495082
Train Epoch: 0 [36864/60000 (60%)]      Loss: 1.251163
Train Epoch: 0 [40960/60000 (67%)]      Loss: 1.066768
Train Epoch: 0 [45056/60000 (73%)]      Loss: 0.883593
Train Epoch: 0 [49152/60000 (80%)]      Loss: 0.830817
Train Epoch: 0 [53248/60000 (87%)]      Loss: 0.727264
Train Epoch: 0 [57344/60000 (93%)]      Loss: 0.774158
Test set: Average loss: 0.4437, Accuracy: 8710/10000 (87%)
cuDNN version: 8902
Peak memory allocated:
fused: 3.08GB, unfused: 1.77GB
Memory allocated at end of forward pass:
fused: 0.59GB, unfused: 0.96GB 

脚本的总运行时间:(0 分钟 37.014 秒)

下载 Python 源代码:custom_function_conv_bn_tutorial.py

下载 Jupyter 笔记本:custom_function_conv_bn_tutorial.ipynb

Sphinx-Gallery 生成的图库

相关文章
|
2月前
|
并行计算 Ubuntu PyTorch
Ubuntu下CUDA、Conda、Pytorch联合教程
本文是一份Ubuntu系统下安装和配置CUDA、Conda和Pytorch的教程,涵盖了查看显卡驱动、下载安装CUDA、添加环境变量、卸载CUDA、Anaconda的下载安装、环境管理以及Pytorch的安装和验证等步骤。
357 1
Ubuntu下CUDA、Conda、Pytorch联合教程
|
5月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.2 中文官方教程(十九)(1)
PyTorch 2.2 中文官方教程(十九)
127 1
PyTorch 2.2 中文官方教程(十九)(1)
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(十八)(3)
PyTorch 2.2 中文官方教程(十八)
81 1
PyTorch 2.2 中文官方教程(十八)(3)
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(十八)(4)
PyTorch 2.2 中文官方教程(十八)
93 1
|
5月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.2 中文官方教程(二十)(4)
PyTorch 2.2 中文官方教程(二十)
96 0
PyTorch 2.2 中文官方教程(二十)(4)
|
5月前
|
Android开发 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(二十)(2)
PyTorch 2.2 中文官方教程(二十)
97 0
PyTorch 2.2 中文官方教程(二十)(2)
|
5月前
|
iOS开发 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(二十)(1)
PyTorch 2.2 中文官方教程(二十)
97 0
PyTorch 2.2 中文官方教程(二十)(1)
|
5月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.2 中文官方教程(十九)(3)
PyTorch 2.2 中文官方教程(十九)
55 0
PyTorch 2.2 中文官方教程(十九)(3)
|
5月前
|
异构计算 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(十九)(2)
PyTorch 2.2 中文官方教程(十九)
89 0
PyTorch 2.2 中文官方教程(十九)(2)
|
5月前
|
PyTorch 算法框架/工具 并行计算
PyTorch 2.2 中文官方教程(二十)(3)
PyTorch 2.2 中文官方教程(二十)
152 0