PyTorch 2.2 中文官方教程(十九)(3)

简介: PyTorch 2.2 中文官方教程(十九)

PyTorch 2.2 中文官方教程(十九)(2)https://developer.aliyun.com/article/1482622

加载和批处理数据

训练过程使用了来自torchtext的 Wikitext-2 数据集。要访问 torchtext 数据集,请按照github.com/pytorch/data上的说明安装 torchdata。

vocab 对象是基于训练数据集构建的,并用于将令牌数值化为张量。从顺序数据开始,batchify() 函数将数据集排列成列,将数据分成大小为 batch_size 的批次后,修剪掉任何剩余的令牌。例如,对于字母表作为序列(总长度为 26)和批次大小为 4,我们将字母表分成长度为 6 的 4 个序列:


image.png

image.png

这些列被模型视为独立的,这意味着GF之间的依赖关系无法被学习,但可以实现更高效的批处理。

# In 'run_worker'
    def print_with_rank(msg):
        print('[RANK {}]: {}'.format(rank, msg))
    from torchtext.datasets import WikiText2
    from torchtext.data.utils import get_tokenizer
    from torchtext.vocab import build_vocab_from_iterator
    train_iter = WikiText2(split='train')
    tokenizer = get_tokenizer('basic_english')
    vocab = build_vocab_from_iterator(map(tokenizer, train_iter), specials=["<unk>"])
    vocab.set_default_index(vocab["<unk>"])
    def data_process(raw_text_iter):
      data = [torch.tensor(vocab(tokenizer(item)), dtype=torch.long) for item in raw_text_iter]
      return torch.cat(tuple(filter(lambda t: t.numel() > 0, data)))
    train_iter, val_iter, test_iter = WikiText2()
    train_data = data_process(train_iter)
    val_data = data_process(val_iter)
    test_data = data_process(test_iter)
    device = torch.device(2 * rank)
    def batchify(data, bsz, rank, world_size, is_train=False):
        # Divide the dataset into ``bsz`` parts.
        nbatch = data.size(0) // bsz
        # Trim off any extra elements that wouldn't cleanly fit (remainders).
        data = data.narrow(0, 0, nbatch * bsz)
        # Evenly divide the data across the ``bsz`` batches.
        data = data.view(bsz, -1).t().contiguous()
        # Divide the data across the ranks only for training data.
        if is_train:
            data_per_rank = data.size(0) // world_size
            data = data[rank * data_per_rank : (rank + 1) * data_per_rank]
        return data.to(device)
    batch_size = 20
    eval_batch_size = 10
    train_data = batchify(train_data, batch_size, rank, world_size, True)
    val_data = batchify(val_data, eval_batch_size, rank, world_size)
    test_data = batchify(test_data, eval_batch_size, rank, world_size)

生成输入和目标序列的函数

get_batch()函数为变压器模型生成输入和目标序列。它将源数据细分为长度为bptt的块。对于语言建模任务,模型需要以下单词作为目标。例如,对于bptt值为 2,我们会得到以下两个变量,对于i = 0:

值得注意的是,块沿着维度 0,与变压器模型中的S维度一致。批处理维度N沿着维度 1。

# In 'run_worker'
    bptt = 35
    def get_batch(source, i):
        seq_len = min(bptt, len(source) - 1 - i)
        data = source[i:i+seq_len]
        target = source[i+1:i+1+seq_len].view(-1)
        # Need batch dimension first for pipeline parallelism.
        return data.t(), target 

模型规模和 Pipe 初始化

为了演示使用管道并行性训练大型 Transformer 模型,我们适当扩展 Transformer 层。我们使用 4096 的嵌入维度,4096 的隐藏大小,16 个注意力头和 8 个总变压器层(nn.TransformerEncoderLayer)。这创建了一个具有**~10 亿**参数的模型。

我们需要初始化RPC 框架,因为 Pipe 依赖于 RPC 框架通过RRef允许未来扩展到跨主机流水线。我们需要使用单个 worker 初始化 RPC 框架,因为我们使用单个进程驱动多个 GPU。

然后,在一个 GPU 上初始化 8 个变压器层,并在另一个 GPU 上初始化 8 个变压器层。一个管道设置在 GPU 0 和 1 之间,另一个设置在 GPU 2 和 3 之间。然后使用DistributedDataParallel复制这两个管道。

# In 'run_worker'
    ntokens = len(vocab) # the size of vocabulary
    emsize = 4096 # embedding dimension
    nhid = 4096 # the dimension of the feedforward network model in ``nn.TransformerEncoder``
    nlayers = 8 # the number of ``nn.TransformerEncoderLayer`` in ``nn.TransformerEncoder``
    nhead = 16 # the number of heads in the Multihead Attention models
    dropout = 0.2 # the dropout value
    from torch.distributed import rpc
    tmpfile = tempfile.NamedTemporaryFile()
    rpc.init_rpc(
        name="worker",
        rank=0,
        world_size=1,
        rpc_backend_options=rpc.TensorPipeRpcBackendOptions(
            init_method="file://{}".format(tmpfile.name),
            # Specifying _transports and _channels is a workaround and we no longer
            # will have to specify _transports and _channels for PyTorch
            # versions >= 1.8.1
            _transports=["ibv", "uv"],
            _channels=["cuda_ipc", "cuda_basic"],
        )
    )
    # Number of GPUs for model parallelism.
    num_gpus = 2
    partition_len = ((nlayers - 1) // num_gpus) + 1
    # Add encoder in the beginning.
    tmp_list = [Encoder(ntokens, emsize, dropout).cuda(2 * rank)]
    module_list = []
    # Add all the necessary transformer blocks.
    for i in range(nlayers):
        transformer_block = TransformerEncoderLayer(emsize, nhead, nhid, dropout)
        if i != 0 and i % (partition_len) == 0:
            module_list.append(nn.Sequential(*tmp_list))
            tmp_list = []
        device = i // (partition_len)
        tmp_list.append(transformer_block.to(2 * rank + device))
    # Add decoder in the end.
    tmp_list.append(Decoder(ntokens, emsize).cuda(2 * rank + num_gpus - 1))
    module_list.append(nn.Sequential(*tmp_list))
    # Need to use 'checkpoint=never' since as of PyTorch 1.8, Pipe checkpointing
    # doesn't work with DDP.
    from torch.distributed.pipeline.sync import Pipe
    chunks = 8
    model = Pipe(torch.nn.Sequential(
        *module_list), chunks = chunks, checkpoint="never")
    # Initialize process group and wrap model in DDP.
    from torch.nn.parallel import DistributedDataParallel
    import torch.distributed as dist
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(
                backend="nccl", rank=rank, world_size=world_size)
    model = DistributedDataParallel(model)
    def get_total_params(module: torch.nn.Module):
        total_params = 0
        for param in module.parameters():
            total_params += param.numel()
        return total_params
    print_with_rank('Total parameters in model: {:,}'.format(get_total_params(model))) 

运行模型

交叉熵损失用于跟踪损失,SGD实现随机梯度下降方法作为优化器。初始学习率设置为 5.0。StepLR用于通过 epochs 调整学习率。在训练过程中,我们使用nn.utils.clip_grad_norm_函数将所有梯度一起缩放,以防止梯度爆炸。

# In 'run_worker'
    criterion = nn.CrossEntropyLoss()
    lr = 5.0 # learning rate
    optimizer = torch.optim.SGD(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
    import time
    def train():
        model.train() # Turn on the train mode
        total_loss = 0.
        start_time = time.time()
        ntokens = len(vocab)
        # Train only for 50 batches to keep script execution time low.
        nbatches = min(50 * bptt, train_data.size(0) - 1)
        for batch, i in enumerate(range(0, nbatches, bptt)):
            data, targets = get_batch(train_data, i)
            optimizer.zero_grad()
            # Since the Pipe is only within a single host and process the ``RRef``
            # returned by forward method is local to this node and can simply
            # retrieved via ``RRef.local_value()``.
            output = model(data).local_value()
            # Need to move targets to the device where the output of the
            # pipeline resides.
            loss = criterion(output.view(-1, ntokens), targets.cuda(2 * rank + 1))
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
            optimizer.step()
            total_loss += loss.item()
            log_interval = 10
            if batch % log_interval == 0 and batch > 0:
                cur_loss = total_loss / log_interval
                elapsed = time.time() - start_time
                print_with_rank('| epoch {:3d} | {:5d}/{:5d} batches | '
                      'lr {:02.2f} | ms/batch {:5.2f} | '
                      'loss {:5.2f} | ppl {:8.2f}'.format(
                        epoch, batch, nbatches // bptt, scheduler.get_last_lr()[0],
                        elapsed * 1000 / log_interval,
                        cur_loss, math.exp(cur_loss)))
                total_loss = 0
                start_time = time.time()
    def evaluate(eval_model, data_source):
        eval_model.eval() # Turn on the evaluation mode
        total_loss = 0.
        ntokens = len(vocab)
        # Evaluate only for 50 batches to keep script execution time low.
        nbatches = min(50 * bptt, data_source.size(0) - 1)
        with torch.no_grad():
            for i in range(0, nbatches, bptt):
                data, targets = get_batch(data_source, i)
                output = eval_model(data).local_value()
                output_flat = output.view(-1, ntokens)
                # Need to move targets to the device where the output of the
                # pipeline resides.
                total_loss += len(data) * criterion(output_flat, targets.cuda(2 * rank + 1)).item()
        return total_loss / (len(data_source) - 1) 

循环遍历 epochs。如果验证损失是迄今为止看到的最佳损失,则保存模型。每个 epoch 后调整学习率。

# In 'run_worker'
    best_val_loss = float("inf")
    epochs = 3 # The number of epochs
    best_model = None
    for epoch in range(1, epochs + 1):
        epoch_start_time = time.time()
        train()
        val_loss = evaluate(model, val_data)
        print_with_rank('-' * 89)
        print_with_rank('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
              'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
                                         val_loss, math.exp(val_loss)))
        print_with_rank('-' * 89)
        if val_loss < best_val_loss:
            best_val_loss = val_loss
            best_model = model
        scheduler.step() 

用测试数据集评估模型

将最佳模型应用于测试数据集以检查结果。

# In 'run_worker'
    test_loss = evaluate(best_model, test_data)
    print_with_rank('=' * 89)
    print_with_rank('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
        test_loss, math.exp(test_loss)))
    print_with_rank('=' * 89)
# Main execution
import torch.multiprocessing as mp
if __name__=="__main__":
    world_size = 2
    mp.spawn(run_worker, args=(world_size, ), nprocs=world_size, join=True) 

输出

[RANK 0]: | epoch   1 |    10/   50 batches | lr 5.00 | ms/batch 778.97 | loss 43.31 | ppl 6432469059895903232.00
[RANK 1]: | epoch   1 |    10/   50 batches | lr 5.00 | ms/batch 778.90 | loss 44.50 | ppl 21245447128217366528.00
[RANK 0]: | epoch   1 |    20/   50 batches | lr 5.00 | ms/batch 699.89 | loss 44.50 | ppl 21176949187407757312.00
[RANK 1]: | epoch   1 |    20/   50 batches | lr 5.00 | ms/batch 699.87 | loss 44.62 | ppl 23975861229620961280.00
[RANK 0]: | epoch   1 |    30/   50 batches | lr 5.00 | ms/batch 698.86 | loss 41.62 | ppl 1193312915629888256.00
[RANK 1]: | epoch   1 |    30/   50 batches | lr 5.00 | ms/batch 698.87 | loss 40.69 | ppl 471605759847546240.00
[RANK 0]: | epoch   1 |    40/   50 batches | lr 5.00 | ms/batch 698.34 | loss 45.20 | ppl 42812308420836458496.00
[RANK 1]: | epoch   1 |    40/   50 batches | lr 5.00 | ms/batch 698.33 | loss 45.68 | ppl 68839569686012223488.00
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 1]: | end of epoch   1 | time: 40.08s | valid loss  0.80 | valid ppl     2.22
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 0]: | end of epoch   1 | time: 40.09s | valid loss  0.80 | valid ppl     2.22
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 0]: | epoch   2 |    10/   50 batches | lr 4.75 | ms/batch 768.51 | loss 36.34 | ppl 6063529544668166.00
[RANK 1]: | epoch   2 |    10/   50 batches | lr 4.75 | ms/batch 769.23 | loss 37.41 | ppl 17651211266236086.00
[RANK 0]: | epoch   2 |    20/   50 batches | lr 4.75 | ms/batch 699.57 | loss 28.97 | ppl 3798441739584.11
[RANK 1]: | epoch   2 |    20/   50 batches | lr 4.75 | ms/batch 699.56 | loss 29.28 | ppl 5203636967575.47
[RANK 0]: | epoch   2 |    30/   50 batches | lr 4.75 | ms/batch 699.04 | loss 28.43 | ppl 2212498693571.25
[RANK 1]: | epoch   2 |    30/   50 batches | lr 4.75 | ms/batch 699.05 | loss 28.33 | ppl 2015144761281.48
[RANK 0]: | epoch   2 |    40/   50 batches | lr 4.75 | ms/batch 699.10 | loss 23.30 | ppl 13121380184.92
[RANK 1]: | epoch   2 |    40/   50 batches | lr 4.75 | ms/batch 699.09 | loss 23.41 | ppl 14653799192.87
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 0]: | end of epoch   2 | time: 39.97s | valid loss  0.24 | valid ppl     1.27
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 1]: | end of epoch   2 | time: 39.98s | valid loss  0.24 | valid ppl     1.27
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 0]: | epoch   3 |    10/   50 batches | lr 4.51 | ms/batch 769.36 | loss 12.80 | ppl 361681.11
[RANK 1]: | epoch   3 |    10/   50 batches | lr 4.51 | ms/batch 768.97 | loss 12.57 | ppl 287876.61
[RANK 0]: | epoch   3 |    20/   50 batches | lr 4.51 | ms/batch 698.27 | loss 12.01 | ppl 164364.60
[RANK 1]: | epoch   3 |    20/   50 batches | lr 4.51 | ms/batch 698.30 | loss 11.98 | ppl 159095.89
[RANK 0]: | epoch   3 |    30/   50 batches | lr 4.51 | ms/batch 697.75 | loss 10.90 | ppl 54261.91
[RANK 1]: | epoch   3 |    30/   50 batches | lr 4.51 | ms/batch 697.72 | loss 10.89 | ppl 53372.39
[RANK 0]: | epoch   3 |    40/   50 batches | lr 4.51 | ms/batch 699.49 | loss 10.78 | ppl 47948.35
[RANK 1]: | epoch   3 |    40/   50 batches | lr 4.51 | ms/batch 699.50 | loss 10.79 | ppl 48664.42
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 0]: | end of epoch   3 | time: 39.96s | valid loss  0.38 | valid ppl     1.46
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 1]: | end of epoch   3 | time: 39.96s | valid loss  0.38 | valid ppl     1.46
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 0]: =========================================================================================
[RANK 0]: | End of training | test loss  0.33 | test ppl     1.39
[RANK 0]: =========================================================================================
[RANK 1]: =========================================================================================
[RANK 1]: | End of training | test loss  0.33 | test ppl     1.39
[RANK 1]: ========================================================================================= 

脚本的总运行时间:(0 分钟 0.000 秒)

下载 Python 源代码:ddp_pipeline.py

下载 Jupyter 笔记本:ddp_pipeline.ipynb

Sphinx-Gallery 生成的图库

使用 Join 上下文管理器进行不均匀输入的分布式训练

原文:pytorch.org/tutorials/advanced/generic_join.html

译者:飞龙

协议:CC BY-NC-SA 4.0

作者Andrew Gu

注意

github中查看并编辑此教程。

注意

Join在 PyTorch 1.10 中作为原型功能引入。此 API 可能会更改。

在本教程中,您将看到:

  • Join上下文管理器的概述。
  • 如何使用DistributedDataParallel与上下文管理器的示例。
  • 如何使用上下文管理器与DistributedDataParallelZeroRedundancyOptimizer的示例。
  • 将关键字参数传递给上下文管理器的示例。
  • 深入了解Join上下文管理器的工作原理。
  • 一个示例,展示如何使一个玩具类与上下文管理器兼容。

PyTorch 2.2 中文官方教程(十九)(4)https://developer.aliyun.com/article/1482627

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
21天前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
127 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
6天前
|
并行计算 监控 搜索推荐
使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程
当处理大规模图数据时,复杂性难以避免。PyTorch-BigGraph (PBG) 是一款专为此设计的工具,能够高效处理数十亿节点和边的图数据。PBG通过多GPU或节点无缝扩展,利用高效的分区技术,生成准确的嵌入表示,适用于社交网络、推荐系统和知识图谱等领域。本文详细介绍PBG的设置、训练和优化方法,涵盖环境配置、数据准备、模型训练、性能优化和实际应用案例,帮助读者高效处理大规模图数据。
28 5
|
3月前
|
并行计算 Ubuntu PyTorch
Ubuntu下CUDA、Conda、Pytorch联合教程
本文是一份Ubuntu系统下安装和配置CUDA、Conda和Pytorch的教程,涵盖了查看显卡驱动、下载安装CUDA、添加环境变量、卸载CUDA、Anaconda的下载安装、环境管理以及Pytorch的安装和验证等步骤。
548 1
Ubuntu下CUDA、Conda、Pytorch联合教程
|
6月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.2 中文官方教程(十九)(1)
PyTorch 2.2 中文官方教程(十九)
135 1
PyTorch 2.2 中文官方教程(十九)(1)
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(十八)(4)
PyTorch 2.2 中文官方教程(十八)
103 1
|
6月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.2 中文官方教程(二十)(4)
PyTorch 2.2 中文官方教程(二十)
120 0
PyTorch 2.2 中文官方教程(二十)(4)
|
6月前
|
Android开发 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(二十)(2)
PyTorch 2.2 中文官方教程(二十)
105 0
PyTorch 2.2 中文官方教程(二十)(2)
|
6月前
|
iOS开发 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(二十)(1)
PyTorch 2.2 中文官方教程(二十)
106 0
PyTorch 2.2 中文官方教程(二十)(1)
|
6月前
|
异构计算 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(十九)(2)
PyTorch 2.2 中文官方教程(十九)
93 0
PyTorch 2.2 中文官方教程(十九)(2)
|
6月前
|
PyTorch 算法框架/工具 并行计算
PyTorch 2.2 中文官方教程(二十)(3)
PyTorch 2.2 中文官方教程(二十)
166 0