PyTorch 2.2 中文官方教程(九)(4)

简介: PyTorch 2.2 中文官方教程(九)

PyTorch 2.2 中文官方教程(九)(3)https://developer.aliyun.com/article/1482548

使用分析器进行性能调试

分析器可用于识别模型中的性能瓶颈。在此示例中,我们构建了一个执行两个子任务的自定义模块:

  • 对输入进行线性变换,并
  • 使用转换结果在掩码张量上获取索引。

我们使用profiler.record_function("label")将每个子任务的代码包装在单独的带标签的上下文管理器中。在分析器输出中,子任务中所有操作的聚合性能指标将显示在相应的标签下。

请注意,使用分析器会产生一些开销,最好仅用于调查代码。如果您正在进行运行时间基准测试,请记得将其删除。

class MyModule(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = True):
        super(MyModule, self).__init__()
        self.linear = nn.Linear(in_features, out_features, bias)
    def forward(self, input, mask):
        with profiler.record_function("LINEAR PASS"):
            out = self.linear(input)
        with profiler.record_function("MASK INDICES"):
            threshold = out.sum(axis=1).mean().item()
            hi_idx = np.argwhere(mask.cpu().numpy() > threshold)
            hi_idx = torch.from_numpy(hi_idx).cuda()
        return out, hi_idx 

分析前向传递

我们初始化随机输入和掩码张量,以及模型。

在运行分析器之前,我们先热身 CUDA 以确保准确的性能基准测试。我们将模块的前向传递包装在profiler.profile上下文管理器中。with_stack=True参数会在跟踪中附加操作的文件和行号。

警告

with_stack=True会产生额外的开销,更适合用于调查代码。如果您正在进行性能基准测试,请记得将其删除。

model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.double).cuda()
# warm-up
model(input, mask)
with profiler.profile(with_stack=True, profile_memory=True) as prof:
    out, idx = model(input, mask) 

打印分析器结果

最后,我们打印分析器结果。profiler.key_averages按运算符名称聚合结果,并可选择按输入形状和/或堆栈跟踪事件进行分组。按输入形状分组有助于识别模型使用的张量形状。

在这里,我们使用group_by_stack_n=5,它按操作及其回溯(截断为最近的 5 个事件)对运行时间进行聚合,并按其注册顺序显示事件。表格也可以通过传递sort_by参数进行排序(请参考文档以获取有效的排序键)。

注意

在笔记本中运行分析器时,您可能会看到类似(13): forward的条目,而不是堆栈跟踪中的文件名。这些对应于(行号): 调用函数

print(prof.key_averages(group_by_stack_n=5).table(sort_by='self_cpu_time_total', row_limit=5))
"""
(Some columns are omitted)
-------------  ------------  ------------  ------------  ---------------------------------
 Name    Self CPU %      Self CPU  Self CPU Mem   Source Location
-------------  ------------  ------------  ------------  ---------------------------------
 MASK INDICES        87.88%        5.212s    -953.67 Mb  /mnt/xarfuse/.../torch/au
 <ipython-input-...>(10): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(9): <module>
 /mnt/xarfuse/.../IPython/
 aten::copy_        12.07%     715.848ms           0 b  <ipython-input-...>(12): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(9): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
 LINEAR PASS         0.01%     350.151us         -20 b  /mnt/xarfuse/.../torch/au
 <ipython-input-...>(7): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(9): <module>
 /mnt/xarfuse/.../IPython/
 aten::addmm         0.00%     293.342us           0 b  /mnt/xarfuse/.../torch/nn
 /mnt/xarfuse/.../torch/nn
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(8): forward
 /mnt/xarfuse/.../torch/nn
 aten::mean         0.00%     235.095us           0 b  <ipython-input-...>(11): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(9): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
-----------------------------  ------------  ---------- ----------------------------------
Self CPU time total: 5.931s
""" 

提高内存性能

请注意,从内存和时间方面来看,最昂贵的操作是forward (10),代表 MASK INDICES 内的操作。让我们先尝试解决内存消耗问题。我们可以看到第 12 行的.to()操作消耗了 953.67 Mb。此操作将mask复制到 CPU。mask是用torch.double数据类型初始化的。我们是否可以通过将其转换为torch.float来减少内存占用?

model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.float).cuda()
# warm-up
model(input, mask)
with profiler.profile(with_stack=True, profile_memory=True) as prof:
    out, idx = model(input, mask)
print(prof.key_averages(group_by_stack_n=5).table(sort_by='self_cpu_time_total', row_limit=5))
"""
(Some columns are omitted)
-----------------  ------------  ------------  ------------  --------------------------------
 Name    Self CPU %      Self CPU  Self CPU Mem   Source Location
-----------------  ------------  ------------  ------------  --------------------------------
 MASK INDICES        93.61%        5.006s    -476.84 Mb  /mnt/xarfuse/.../torch/au
 <ipython-input-...>(10): forward
 /mnt/xarfuse/  /torch/nn
 <ipython-input-...>(9): <module>
 /mnt/xarfuse/.../IPython/
 aten::copy_         6.34%     338.759ms           0 b  <ipython-input-...>(12): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(9): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
 aten::as_strided         0.01%     281.808us           0 b  <ipython-input-...>(11): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(9): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
 aten::addmm         0.01%     275.721us           0 b  /mnt/xarfuse/.../torch/nn
 /mnt/xarfuse/.../torch/nn
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(8): forward
 /mnt/xarfuse/.../torch/nn
 aten::_local        0.01%     268.650us           0 b  <ipython-input-...>(11): forward
 _scalar_dense                                          /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(9): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
-----------------  ------------  ------------  ------------  --------------------------------
Self CPU time total: 5.347s
""" 

此操作的 CPU 内存占用减半。

提高时间性能

虽然消耗的时间也有所减少,但仍然太高。原来从 CUDA 到 CPU 复制矩阵是非常昂贵的!forward (12)中的aten::copy_操作符将mask复制到 CPU,以便可以使用 NumPy 的argwhere函数。forward(13)中的aten::copy_将数组复制回 CUDA 作为张量。如果我们在这里使用torch函数nonzero(),就可以消除这两个操作。

class MyModule(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = True):
        super(MyModule, self).__init__()
        self.linear = nn.Linear(in_features, out_features, bias)
    def forward(self, input, mask):
        with profiler.record_function("LINEAR PASS"):
            out = self.linear(input)
        with profiler.record_function("MASK INDICES"):
            threshold = out.sum(axis=1).mean()
            hi_idx = (mask > threshold).nonzero(as_tuple=True)
        return out, hi_idx
model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.float).cuda()
# warm-up
model(input, mask)
with profiler.profile(with_stack=True, profile_memory=True) as prof:
    out, idx = model(input, mask)
print(prof.key_averages(group_by_stack_n=5).table(sort_by='self_cpu_time_total', row_limit=5))
"""
(Some columns are omitted)
--------------  ------------  ------------  ------------  ---------------------------------
 Name    Self CPU %      Self CPU  Self CPU Mem   Source Location
--------------  ------------  ------------  ------------  ---------------------------------
 aten::gt        57.17%     129.089ms           0 b  <ipython-input-...>(12): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(25): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
 aten::nonzero        37.38%      84.402ms           0 b  <ipython-input-...>(12): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(25): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
 INDEX SCORE         3.32%       7.491ms    -119.21 Mb  /mnt/xarfuse/.../torch/au
 <ipython-input-...>(10): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(25): <module>
 /mnt/xarfuse/.../IPython/
aten::as_strided         0.20%    441.587us          0 b  <ipython-input-...>(12): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(25): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
 aten::nonzero
 _numpy             0.18%     395.602us           0 b  <ipython-input-...>(12): forward
 /mnt/xarfuse/.../torch/nn
 <ipython-input-...>(25): <module>
 /mnt/xarfuse/.../IPython/
 /mnt/xarfuse/.../IPython/
--------------  ------------  ------------  ------------  ---------------------------------
Self CPU time total: 225.801ms
""" 

进一步阅读

我们已经看到了如何使用分析器来调查 PyTorch 模型中的时间和内存瓶颈。在这里阅读更多关于分析器的信息:

脚本的总运行时间: ( 0 分钟 0.000 秒)

下载 Python 源代码: profiler.py

下载 Jupyter 笔记本: profiler.ipynb

Sphinx-Gallery 生成的图库

全面跟踪分析简介

原文:pytorch.org/tutorials/beginner/hta_intro_tutorial.html

译者:飞龙

协议:CC BY-NC-SA 4.0

作者:Anupam Bhatnagar

在本教程中,我们演示如何使用全面跟踪分析(HTA)来分析分布式训练作业的跟踪。要开始,请按照以下步骤操作。

安装 HTA

我们建议使用 Conda 环境安装 HTA。要安装 Anaconda,请参阅官方 Anaconda 文档

  1. 使用 pip 安装 HTA:
pip install HolisticTraceAnalysis 
  1. (可选但建议)设置一个 Conda 环境:
# create the environment env_name
conda create -n env_name
# activate the environment
conda activate env_name
# When you are done, deactivate the environment by running ``conda deactivate`` 

入门指南

启动 Jupyter 笔记本,并将trace_dir变量设置为跟踪位置。

from hta.trace_analysis import TraceAnalysis
trace_dir = "/path/to/folder/with/traces"
analyzer = TraceAnalysis(trace_dir=trace_dir) 

时间细分

为了有效利用 GPU,了解它们为特定作业花费时间至关重要。它们主要是在计算、通信、内存事件中还是空闲?时间细分功能提供了这三个类别中所花费时间的详细分析。

  • 空闲时间 - GPU 空闲。
  • 计算时间 - GPU 用于矩阵乘法或向量操作。
  • 非计算时间 - GPU 用于通信或内存事件。

为了实现高效的训练,代码应最大化计算时间,最小化空闲时间和非计算时间。以下函数生成一个数据框,提供每个等级的时间使用情况的详细分解。

analyzer = TraceAnalysis(trace_dir = "/path/to/trace/folder")
time_spent_df = analyzer.get_temporal_breakdown() 

当在get_temporal_breakdown函数中将visualize参数设置为True时,它还会生成一个按等级分解的条形图。

空闲时间细分

深入了解 GPU 空闲时间及其原因可以帮助指导优化策略。当 GPU 上没有运行任何内核时,GPU 被视为空闲。我们开发了一种算法,将空闲时间分类为三个不同的类别:

  • **主机等待:**指的是由于 CPU 未能快速排队内核以使 GPU 完全利用而导致的 GPU 上的空闲时间。这些类型的低效率可以通过检查导致减速的 CPU 运算符、增加批量大小和应用运算符融合来解决。
  • **内核等待:**指的是在 GPU 上连续启动内核时伴随的短暂开销。归因为此类别的空闲时间可以通过使用 CUDA 图优化来最小化。
  • **其他等待:**此类别包括由于信息不足而目前无法归因的空闲时间。可能的原因包括使用 CUDA 事件在 CUDA 流之间同步以及启动内核时的延迟。

主机等待时间可以解释为 GPU 由于 CPU 而停滞的时间。为了将空闲时间归因为内核等待,我们使用以下启发式方法:

连续内核之间的间隔<阈值

默认阈值为 30 纳秒,可以使用consecutive_kernel_delay参数进行配置。默认情况下,仅为等级 0 计算空闲时间细分。为了计算其他等级的细分,可以在get_idle_time_breakdown函数中使用ranks参数。空闲时间细分可以按以下方式生成:

analyzer = TraceAnalysis(trace_dir = "/path/to/trace/folder")
idle_time_df = analyzer.get_idle_time_breakdown() 

该函数返回一个数据框的元组。第一个数据框包含每个流中每个等级的类别空闲时间。

第二个数据框是在将show_idle_interval_stats设置为True时生成的。它包含每个流在每个 rank 上的空闲时间的摘要统计信息。

提示

默认情况下,空闲时间分解显示每个空闲时间类别的百分比。将visualize_pctg参数设置为False,函数将以 y 轴上的绝对时间呈现。

内核分解

内核分解功能将每种内核类型(如通信(COMM)、计算(COMP)和内存(MEM))花费的时间分解,跨所有 rank,并呈现在每个类别中花费的时间比例。这是每个类别中花费的时间的百分比饼图:

内核分解可以按以下方式计算:

analyzer = TraceAnalysis(trace_dir = "/path/to/trace/folder")
kernel_type_metrics_df, kernel_metrics_df = analyzer.get_gpu_kernel_breakdown() 

函数返回的第一个数据框包含生成饼图所使用的原始值。

内核持续时间分布

get_gpu_kernel_breakdown返回的第二个数据框包含每个内核的持续时间摘要统计信息。特别是,这包括每个 rank 上每个内核的计数、最小值、最大值、平均值、标准偏差、总和和内核类型。

使用这些数据,HTA 创建许多可视化来识别性能瓶颈。

  1. 每个 rank 上每种内核类型的前 5 个内核的饼图。
  2. 每个顶级内核和每种内核类型的所有 rank 上的平均持续时间的条形图。

提示

所有图像均使用 plotly 生成。在图表上悬停会显示位于右上角的模式栏,允许用户缩放、平移、选择和下载图表。

上面的饼图显示了前 5 个计算、通信和内存内核。为每个 rank 生成类似的饼图。可以使用传递给 get_gpu_kernel_breakdown 函数的num_kernels参数配置饼图以显示前 k 个内核。此外,可以使用duration_ratio参数来调整需要分析的时间百分比。如果同时指定了num_kernelsduration_ratio,则num_kernels优先。

上面的条形图显示了所有 rank 上 NCCL AllReduce 内核的平均持续时间。黑线表示每个 rank 上所花费的最短和最长时间。

警告

在使用 jupyter-lab 时,将“image_renderer”参数值设置为“jupyterlab”,否则图形将无法在笔记本中呈现。

有关此功能的详细演练,请参阅存储库的示例文件夹中的gpu_kernel_breakdown notebook

通信计算重叠

在分布式训练中,大量时间花费在 GPU 之间的通信和同步事件上。为了实现高 GPU 效率(如 TFLOPS/GPU),保持 GPU 过度订阅计算内核是至关重要的。换句话说,GPU 不应因未解决的数据依赖关系而被阻塞。衡量计算受数据依赖关系阻塞程度的一种方法是计算通信计算重叠。如果通信事件与计算事件重叠,就会观察到更高的 GPU 效率。缺乏通信和计算重叠将导致 GPU 空闲,从而导致效率低下。总之,更高的通信计算重叠是可取的。为了计算每个 rank 的重叠百分比,我们测量以下比率:

(在通信时花费的时间) / (在通信中花费的时间)

通信计算重叠可以计算如下:

analyzer = TraceAnalysis(trace_dir = "/path/to/trace/folder")
overlap_df = analyzer.get_comm_comp_overlap() 

该函数返回一个包含每个 rank 的重叠百分比的数据框。

visualize参数设置为 True 时,get_comm_comp_overlap函数还会生成一个柱状图,表示每个 rank 的重叠。

增强计数器

内存带宽和队列长度计数器

内存带宽计数器测量从 H2D、D2H 和 D2D 复制数据时使用的内存复制带宽(memcpy)和内存设置(memset)事件。HTA 还计算每个 CUDA 流中未完成操作的数量。我们将其称为队列长度。当流上的队列长度为 1024 或更大时,新事件无法在该流上调度,CPU 将停止,直到 GPU 流上的事件被处理。

使用generate_trace_with_counters API 输出一个带有内存带宽和队列长度计数器的新跟踪文件。新的跟踪文件包含指示由 memcpy/memset 操作使用的内存带宽的轨道,以及每个流的队列长度的轨道。默认情况下,这些计数器是使用 rank 0 跟踪文件生成的,新文件的名称包含后缀_with_counters。用户可以通过在generate_trace_with_counters API 中使用ranks参数来为多个 rank 生成计数器。

analyzer = TraceAnalysis(trace_dir = "/path/to/trace/folder")
analyzer.generate_trace_with_counters() 

生成的带有增强计数器的跟踪文件的屏幕截图。

HTA 还提供了内存复制带宽和队列长度计数器的摘要,以及使用以下 API 对代码的 profile 部分的计数器的时间序列:

要查看摘要和时间序列,请使用:

# generate summary
mem_bw_summary = analyzer.get_memory_bw_summary()
queue_len_summary = analyzer.get_queue_length_summary()
# get time series
mem_bw_series = analyzer.get_memory_bw_time_series()
queue_len_series = analyzer.get_queue_length_series() 

摘要包含计数、最小值、最大值、平均值、标准差、25th、50th 和 75th 百分位数。

时间序列仅包含数值更改时的点。一旦观察到一个值,时间序列将保持恒定直到下一次更新。内存带宽和队列长度时间序列函数返回一个字典,其键是等级,值是该等级的时间序列。默认情况下,时间序列仅为等级 0 计算。

CUDA 内核启动统计

对于在 GPU 上启动的每个事件,CPU 上都有相应的调度事件,例如CudaLaunchKernelCudaMemcpyAsyncCudaMemsetAsync。这些事件通过追踪中的一个共同的相关 ID 相互关联 - 请参见上图。此功能计算 CPU 运行时事件的持续时间,其相应的 GPU 内核和启动延迟,例如,GPU 内核启动和 CPU 操作结束之间的差异。内核启动信息可以按如下方式生成:

analyzer = TraceAnalysis(trace_dir="/path/to/trace/dir")
kernel_info_df = analyzer.get_cuda_kernel_launch_stats() 

下面给出了生成的数据框的屏幕截图。

CPU 操作持续时间,GPU 内核和启动延迟使我们能够找到以下内容:

  • 短 GPU 内核 - GPU 内核持续时间低于相应的 CPU 运行时事件。
  • 运行时事件异常值 - CPU 运行时事件持续时间过长。
  • 启动延迟异常值 - GPU 内核调度时间过长。

HTA 为上述三个类别生成分布图。

短 GPU 内核

通常,CPU 端的启动时间范围为 5-20 微秒。在某些情况下,GPU 执行时间低于启动时间本身。下面的图表帮助我们找出代码中这种情况发生的频率。

运行时事件异常值

运行时异常值取决于用于分类异常值的截止值,因此get_cuda_kernel_launch_stats API 提供runtime_cutoff参数来配置该值。

启动延迟异常值

启动延迟异常值取决于用于分类异常值的截止值,因此 get_cuda_kernel_launch_stats API 提供launch_delay_cutoff参数来配置该值。

结论

在本教程中,您已经学会了如何安装和使用 HTA,这是一种性能工具,可以帮助您分析分布式训练工作流中的瓶颈。要了解如何使用 HTA 工具执行跟踪差异分析,请参阅使用全面跟踪分析进行跟踪差异

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
198 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
2月前
|
并行计算 监控 搜索推荐
使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程
当处理大规模图数据时,复杂性难以避免。PyTorch-BigGraph (PBG) 是一款专为此设计的工具,能够高效处理数十亿节点和边的图数据。PBG通过多GPU或节点无缝扩展,利用高效的分区技术,生成准确的嵌入表示,适用于社交网络、推荐系统和知识图谱等领域。本文详细介绍PBG的设置、训练和优化方法,涵盖环境配置、数据准备、模型训练、性能优化和实际应用案例,帮助读者高效处理大规模图数据。
61 5
|
5月前
|
并行计算 Ubuntu PyTorch
Ubuntu下CUDA、Conda、Pytorch联合教程
本文是一份Ubuntu系统下安装和配置CUDA、Conda和Pytorch的教程,涵盖了查看显卡驱动、下载安装CUDA、添加环境变量、卸载CUDA、Anaconda的下载安装、环境管理以及Pytorch的安装和验证等步骤。
911 1
Ubuntu下CUDA、Conda、Pytorch联合教程
|
8月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.2 中文官方教程(十九)(1)
PyTorch 2.2 中文官方教程(十九)
150 1
PyTorch 2.2 中文官方教程(十九)(1)
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(十八)(4)
PyTorch 2.2 中文官方教程(十八)
125 1
|
8月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.2 中文官方教程(二十)(4)
PyTorch 2.2 中文官方教程(二十)
148 0
PyTorch 2.2 中文官方教程(二十)(4)
|
8月前
|
Android开发 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(二十)(2)
PyTorch 2.2 中文官方教程(二十)
124 0
PyTorch 2.2 中文官方教程(二十)(2)
|
8月前
|
iOS开发 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(二十)(1)
PyTorch 2.2 中文官方教程(二十)
119 0
PyTorch 2.2 中文官方教程(二十)(1)
|
8月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.2 中文官方教程(十九)(3)
PyTorch 2.2 中文官方教程(十九)
82 0
PyTorch 2.2 中文官方教程(十九)(3)
|
8月前
|
异构计算 PyTorch 算法框架/工具
PyTorch 2.2 中文官方教程(十九)(2)
PyTorch 2.2 中文官方教程(十九)
110 0
PyTorch 2.2 中文官方教程(十九)(2)