从埃森哲《技术展望2024》看AI拐点下的数字化趋势

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
简介: 从埃森哲《技术展望2024》看AI拐点下的数字化趋势


埃森哲发布主题为“AI拐点:重塑人类潜力”的《技术展望2024》报告。报告指出,人们身处巨大的技术变革中,其中AI等颠覆性技术正趋于“人性化”,将重塑市场和组织的生产力规则。


人类对技术的设计理念始终未变,只是从先前的以技术为主导转变为现今的以人性化为核心。新一代技术更加契合人类的思维与行为模式,紧密贴合人类的需求与想象力,与生活的方方面面紧密相连。如今,人类已无需再受制于机器的需求和局限,例如在导航时为了避免偏离目标而不得不忍受导航仪的干扰。借助AI等人性化技术,技术将变得更直观和易用,我们可以更加顺畅地优化和释放人类潜能,让技术真正服务于我们的需求,而不是反过来成为我们的束缚。越来越多人也将通过AI等技术,轻松接触和利用技术,扩大获得知识的机会并参与持续创新。


在此背景下,领导者仍会面临产品和服务是否扩大规模、新数据的应用和制定变革策略等问题,此外还会增加新的思考维度:任何监督人工智能?不同人在数字化转型中担当怎样的角色?因此,AI等技术对于众多企业来讲,既是机遇也是挑战。


01人类与数据关系颠覆:从知识到智识的革新


数据是塑造当今数字化企业最重要的因素之一,对于企业来讲是十分珍贵的资源。企业希望客户、员工、合作伙伴和投资者能够找到并使用这些信息。但在现实应用场景中,可能会因为不记得正确的搜索词等,导致无法编写查询,数据只是孤立地存在“数据池”,难以应用。现在,数据和人类的关系正在发生变化,人们从搜索获取数据,变为通过询问人工智能聊天机器人来寻求答案。对于当今的数据驱动型业务来说,生成式AI可以带来不可估量的潜在价值。

数字化企业的整个基础将被颠覆,企业将使用大语言模型顾问,使企业充分利用数据,最终实现数据驱动业务运营。

“顾问”型聊天机器人需要综合大量信息,使用不同的数据模式,才能提供更准确的答案和建议。这要求企业从根本上思考如何收集和构建数据及更广泛的架构,并将人工智能应用于数字化框架中。无论企业数字化的基础如何,大数据模型顾问都需要完整且易用访问的数据基础。

数据图谱是其中最重要的技术之一。它是一种用于表示和分析数据之间关系的可视化工具,核心部分包括节点和边,节点通常代表人、物品、公司等数据实体,边则代表这些实体之间的关系,如购买、合作、关联等。数据图谱的结构能展示数据的复杂网络结构,并允许用户深入探索和分析。

除了数据图谱之外,企业更新重整架构,还需要使用数据网格和数据架构来匹配和梳理企业需要处理的信息。

为了实现从搜索到真正的顾问模式的转变,企业还需要做更多数据培训。通常企业会选择以下模式训练大语言模型:第一种从零训练。但这需要投入大量资源,因此比较少见,常见于领先的人工智能公司;第二种对现有大语言模型进行“微调”。企业借助大型云厂商等数据企业的通用大数据模型,根据特定需求,进行进一步的培训,使其符合自身专业领域的需求。与从头开始训练相比,这种模式的成本明显要低得多,但可能需要对实时性进行一些妥协。此外,微调模式也在不断升级,针对特定场景,企业开始微调小语言模型,这种方法效率更高、运行成本也更低,而且可以更快地进行训练,并用于较小的边缘设备。

最后,构建大语言模型顾问的一种流行方法是提供更具相关性、特定用例信息来关联训练。通常这是通过检索增强生成(Retrieval-Augmented Generation ,RAG)实现 ,它将信息检索系统和生成模型相结合,让模型既能自我训练又能直接使用,通过API即可访问。情境学习和RAG所需的时间和计算资源较少,适合对信息时效性要求比较高的场景,但精确性仍有待验证。

无论企业选择哪种方式或者探索更多的方式构建大数据模型,都必须具备坚实的数据基础和相关语境,否则大数据模型将始终无法达到预期效果。


02探索大语言模型的未来:洞见风险并寻求降低之道


获得大语言模型带来新机遇的同时,企业也要了解相关风险。例如,大数据模型被训练为以高度确定性提供概率性答案,因此有时模型会传达错误信息。此外,数据的安全性和权限等问题也值得关注。


但这些挑战瑕不掩瑜,大语言模型仍然有许多利好。接下来企业需要关注大模型的准确性提升和理性判断。首先,输入到大语言模型中的数据,无论是用于培训还是提示,都应该是新鲜、标签明确且完整客观的高质量数据;其次,数据权限要明确,确保用户有权访问为情境学习而检索的任何数据;第三,生成式AI聊天机器人的输出应该与品牌调性保持一致,确保模型不会回答敏感数据或有害言论,以及不能回答超出其范围的问题,并告知回答的不确定性并提供验证来源;最后,聊天机器人需要持续接受测试和人工监督。


在人类科技发展的关键时刻,生成式AI等技术正成为数据和软件领域的引领者,促使数字化企业深入反思并创新其与客户、员工及合作伙伴的交互方式。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
200
分享
相关文章
生成AI的两大范式:扩散模型与Flow Matching的理论基础与技术比较
本文系统对比了扩散模型与Flow Matching两种生成模型技术。扩散模型通过逐步添加噪声再逆转过程生成数据,类比为沙堡的侵蚀与重建;Flow Matching构建分布间连续路径的速度场,如同矢量导航系统。两者在数学原理、训练动态及应用上各有优劣:扩散模型适合复杂数据,Flow Matching采样效率更高。文章结合实例解析两者的差异与联系,并探讨其在图像、音频等领域的实际应用,为生成建模提供了全面视角。
118 1
健康监测设备的技术革命:AI+物联网如何让你随时掌握健康数据?
健康监测设备的技术革命:AI+物联网如何让你随时掌握健康数据?
199 19
开源AI守护后厨——餐饮厨房视频安全系统的技术解析
餐饮厨房视频安全系统是一套融合开源AI技术与视频监控的智能化解决方案,涵盖实时检测、行为监测、数据分析、公众透明化及反馈闭环五大模块。系统通过YOLOv8、ResNet等算法实现后厨卫生与操作规范的精准监控,识别率达97%,问题响应时间缩短至秒级。同时支持后厨直播与监管对接,提升消费者信任和管理效率。其灵活开源的特点,为食品行业安全管理提供了高效、透明的新路径,未来可扩展至食品加工等领域。
AI大模型进阶系列(01)看懂AI大模型的主流技术 | AI对普通人的本质影响是什么
本文分享了作者在AI领域的创作心得与技术见解,涵盖从获奖经历到大模型核心技术的深入解析。内容包括大模型推理过程、LLM类型、prompt工程参数配置及最佳实践,以及RAG技术和模型微调的对比分析。同时探讨了AI对社会和个人的影响,特别是在deepseek出现后带来的技术革新与应用前景。适合希望了解AI大模型技术及其实际应用的读者学习参考。
探讨 AI 驱动自适应数据采集技术
在当今互联网环境下,网页结构动态变化日益复杂,传统数据采集技术面临巨大挑战。本文探讨了基于AI算法的自适应数据采集方法,结合爬虫代理、Cookie与User-Agent设置等关键技术,应对动态页面变更。通过Python示例代码,展示如何稳定抓取目标网站数据,并分析该技术的优势、挑战及实际应用注意事项,为未来数据采集提供了新思路。
111 44
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
121 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
数字化转型需要的技术:生成式AI时代的全栈能力图谱
本文探讨生成式AI推动下的数字化转型技术需求转变,从技术本质、实施路径、伦理规制三方面解构核心要素。技术本质从工具理性进化到能力体系,需建立模型思维、多模态交互和自主进化能力。实施路径分为认知重构、实验验证与迭代优化三个阶段。同时,文章介绍生成式人工智能认证(GAI认证)的战略价值,强调其在能力基准建立、技术合作及创新生态接入中的作用。最后,文章分析组织能力进化与未来技术前沿,如认知智能、具身智能和群体智能的演进方向,为企业提供全面的技术赋能与战略转型指导。
AI驱动的开源治理——社会综合治理智慧化系统的技术突破
通过AI识别与智能监控精准捕捉不文明行为,生成证据链并分级预警,识别精度达98%;跨部门联动平台打破信息孤岛,实现多部门高效协作,事件处置时间缩短至5分钟;多场景适配的开源架构支持景区、校园等多样化需求,灵活部署边缘计算优化性能。试点成效显著,大幅提升治理效能。
42 14
HarmonyOS Next~鸿蒙AI功能开发:Core Speech Kit与Core Vision Kit的技术解析与实践
本文深入解析鸿蒙操作系统(HarmonyOS)中的Core Speech Kit与Core Vision Kit,探讨其在AI功能开发中的核心能力与实践方法。Core Speech Kit聚焦语音交互,提供语音识别、合成等功能,支持多场景应用;Core Vision Kit专注视觉处理,涵盖人脸检测、OCR等技术。文章还分析了两者的协同应用及生态发展趋势,展望未来AI技术与鸿蒙系统结合带来的智能交互新阶段。
98 31
AI大模型进阶系列(03) prompt 工程指南 | 实战核心技术有哪些?
本文深入讲解了AI大模型中的prompt工程。文章分析了role角色(system、user、assistant)的意义,message多轮会话记忆机制,以及prompt的核心三要素(上下文背景、输入内容、输出指示)。同时介绍了多种提示优化技术,如少样本提示、CoT链式思考、prompt chaining链式提示、思维树ToT提示等,还展示了让AI生成提示词的方法,为实际应用提供了全面指导。

热门文章

最新文章