从埃森哲《技术展望2024》看AI拐点下的数字化趋势

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
简介: 从埃森哲《技术展望2024》看AI拐点下的数字化趋势


埃森哲发布主题为“AI拐点:重塑人类潜力”的《技术展望2024》报告。报告指出,人们身处巨大的技术变革中,其中AI等颠覆性技术正趋于“人性化”,将重塑市场和组织的生产力规则。


人类对技术的设计理念始终未变,只是从先前的以技术为主导转变为现今的以人性化为核心。新一代技术更加契合人类的思维与行为模式,紧密贴合人类的需求与想象力,与生活的方方面面紧密相连。如今,人类已无需再受制于机器的需求和局限,例如在导航时为了避免偏离目标而不得不忍受导航仪的干扰。借助AI等人性化技术,技术将变得更直观和易用,我们可以更加顺畅地优化和释放人类潜能,让技术真正服务于我们的需求,而不是反过来成为我们的束缚。越来越多人也将通过AI等技术,轻松接触和利用技术,扩大获得知识的机会并参与持续创新。


在此背景下,领导者仍会面临产品和服务是否扩大规模、新数据的应用和制定变革策略等问题,此外还会增加新的思考维度:任何监督人工智能?不同人在数字化转型中担当怎样的角色?因此,AI等技术对于众多企业来讲,既是机遇也是挑战。


01人类与数据关系颠覆:从知识到智识的革新


数据是塑造当今数字化企业最重要的因素之一,对于企业来讲是十分珍贵的资源。企业希望客户、员工、合作伙伴和投资者能够找到并使用这些信息。但在现实应用场景中,可能会因为不记得正确的搜索词等,导致无法编写查询,数据只是孤立地存在“数据池”,难以应用。现在,数据和人类的关系正在发生变化,人们从搜索获取数据,变为通过询问人工智能聊天机器人来寻求答案。对于当今的数据驱动型业务来说,生成式AI可以带来不可估量的潜在价值。

数字化企业的整个基础将被颠覆,企业将使用大语言模型顾问,使企业充分利用数据,最终实现数据驱动业务运营。

“顾问”型聊天机器人需要综合大量信息,使用不同的数据模式,才能提供更准确的答案和建议。这要求企业从根本上思考如何收集和构建数据及更广泛的架构,并将人工智能应用于数字化框架中。无论企业数字化的基础如何,大数据模型顾问都需要完整且易用访问的数据基础。

数据图谱是其中最重要的技术之一。它是一种用于表示和分析数据之间关系的可视化工具,核心部分包括节点和边,节点通常代表人、物品、公司等数据实体,边则代表这些实体之间的关系,如购买、合作、关联等。数据图谱的结构能展示数据的复杂网络结构,并允许用户深入探索和分析。

除了数据图谱之外,企业更新重整架构,还需要使用数据网格和数据架构来匹配和梳理企业需要处理的信息。

为了实现从搜索到真正的顾问模式的转变,企业还需要做更多数据培训。通常企业会选择以下模式训练大语言模型:第一种从零训练。但这需要投入大量资源,因此比较少见,常见于领先的人工智能公司;第二种对现有大语言模型进行“微调”。企业借助大型云厂商等数据企业的通用大数据模型,根据特定需求,进行进一步的培训,使其符合自身专业领域的需求。与从头开始训练相比,这种模式的成本明显要低得多,但可能需要对实时性进行一些妥协。此外,微调模式也在不断升级,针对特定场景,企业开始微调小语言模型,这种方法效率更高、运行成本也更低,而且可以更快地进行训练,并用于较小的边缘设备。

最后,构建大语言模型顾问的一种流行方法是提供更具相关性、特定用例信息来关联训练。通常这是通过检索增强生成(Retrieval-Augmented Generation ,RAG)实现 ,它将信息检索系统和生成模型相结合,让模型既能自我训练又能直接使用,通过API即可访问。情境学习和RAG所需的时间和计算资源较少,适合对信息时效性要求比较高的场景,但精确性仍有待验证。

无论企业选择哪种方式或者探索更多的方式构建大数据模型,都必须具备坚实的数据基础和相关语境,否则大数据模型将始终无法达到预期效果。


02探索大语言模型的未来:洞见风险并寻求降低之道


获得大语言模型带来新机遇的同时,企业也要了解相关风险。例如,大数据模型被训练为以高度确定性提供概率性答案,因此有时模型会传达错误信息。此外,数据的安全性和权限等问题也值得关注。


但这些挑战瑕不掩瑜,大语言模型仍然有许多利好。接下来企业需要关注大模型的准确性提升和理性判断。首先,输入到大语言模型中的数据,无论是用于培训还是提示,都应该是新鲜、标签明确且完整客观的高质量数据;其次,数据权限要明确,确保用户有权访问为情境学习而检索的任何数据;第三,生成式AI聊天机器人的输出应该与品牌调性保持一致,确保模型不会回答敏感数据或有害言论,以及不能回答超出其范围的问题,并告知回答的不确定性并提供验证来源;最后,聊天机器人需要持续接受测试和人工监督。


在人类科技发展的关键时刻,生成式AI等技术正成为数据和软件领域的引领者,促使数字化企业深入反思并创新其与客户、员工及合作伙伴的交互方式。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
教育领域的AI进展:智能辅导与个性化学习的技术革新与挑战
随着人工智能技术的发展,AI Agent在教育领域的应用日益广泛,特别是在智能辅导与个性化学习方面展现出巨大潜力。通过自然语言处理、机器学习和数据分析等技术,AI可模拟个性化辅导员,根据学生的学习情况提供定制化资源与实时反馈。未来,AI Agent将更注重情感分析与跨学科培养,成为教师的有力助手,推动教育公平与效率提升。然而,数据隐私、个体差异及教育资源不平衡等问题仍需克服,以实现更智能化、全面化的教育生态。
148 10
教育领域的AI进展:智能辅导与个性化学习的技术革新与挑战
|
2月前
|
人工智能 编解码 芯片
告别低效沟通|让技术提问不再头疼-这套高效AI提问模板来帮你
不会向ai提问,不知道怎么提问的 可以看看
70 1
告别低效沟通|让技术提问不再头疼-这套高效AI提问模板来帮你
|
2月前
|
人工智能 架构师 关系型数据库
第二届固件技术峰会盛大召开,共探 AI 时代固件创新之路
阿里云联合字节跳动、固件联盟主办的第二届固件技术峰会在长沙顺利召开,探索AI时代固件技术发展新趋势。
|
21天前
|
传感器 人工智能 智能设计
邀请大学生用AI技术助力乡村振兴!“挑战杯”阿里云赛题有哪些值得关注?丨云工开物
第十九届“挑战杯”中国青年科技创新“揭榜挂帅”擂台赛——人工智能主擂台赛在上海启动。赛事聚焦城市治理、乡村振兴等领域,由阿里云等企业发榜,提供算力与AI工具支持。其中,“以AI助力乡村振兴”专项赛邀请高校师生围绕浙江开化县、江西遂川县的文化与特产设计文旅产品,推动传统文化与现代技术融合,为乡村振兴注入新活力。赛事现已开放报名,欢迎全国高校师生参与。
|
1月前
|
人工智能 Cloud Native 数据管理
邀您参加 KubeCon China 2025 分论坛 | 阿里云 AI 基础设施技术沙龙
KubeCon + CloudNativeCon China 2025 将于6月10-11日在香港合和酒店举办,由CNCF与Linux基金会联合主办。阿里云开发者将在大会上分享多个技术议题,涵盖AI模型分发、Argo工作流、Fluid数据管理等领域。大会前还有阿里云AI基础设施技术沙龙,聚焦AI基础设施及云原生技术实战经验。欢迎扫码报名参与!
265 64
|
19天前
|
机器学习/深度学习 人工智能 前端开发
AI+Code驱动的M站首页重构实践:从技术债务到智能化开发
本文分享了阿里巴巴找品M站首页重构项目中AI+Code提效的实践经验。面对M站技术栈陈旧、开发效率低下的挑战,我们通过楼层动态化架构重构和AI智能脚手架,实现了70%首页场景的标准化覆盖 + 30%的非标场景的研发提速,开发效率分别提升90%+与40%+。文章详细介绍了楼层模板沉淀、AI辅助代码生成、智能组件复用评估等核心实践,为团队AI工程能力升级提供了可复制的方法论。
167 15
AI+Code驱动的M站首页重构实践:从技术债务到智能化开发
|
22天前
|
人工智能 移动开发 JavaScript
AI + 低代码技术揭秘(一):概述
VTJ.PRO 是一个基于 AI 的 Vue3 低代码开发平台,支持 Vue 单文件组件(SFC)与领域特定语言(DSL)之间的双向转换。它构建于 monorepo 架构之上,提供同步版本控制和全面的软件包生态系统,涵盖可视化设计、代码生成及多平台部署功能,同时兼容现有 Vue 3 工作流。平台特点包括双向代码流、AI 集成、Vue 3 基础支持、多平台适配以及低学习门槛等。通过模块化架构与智能工具,VTJ 加速开发流程并保持灵活性,适用于 Web、移动及跨平台项目。当前版本为 0.12.40,源码托管于 Gitee。
70 8
AI + 低代码技术揭秘(一):概述
|
26天前
|
数据采集 传感器 人工智能
船厂复杂环境下的多模态AI安防系统技术实践
本方案针对船厂复杂工业场景,设计了五层分布式AI安防系统架构:数据采集层(海康摄像头+气体传感器)、预处理层(动态光照补偿)、特征引擎层(YOLOv8s检测+ESRGAN增强+ByteTrack跟踪)和规则决策层。同时,实现交通违规检测、龙门吊防撞及人员滞留监测等关键模块,并通过两阶段小目标检测、工业干扰优化与边缘计算加速解决工程挑战。系统采用边缘-中心协同架构,支持REST API与MQTT/ZMQ通信,技术验证数据显示其准确率高达92.4%,障碍物识别延迟平均仅850ms。
49 1
船厂复杂环境下的多模态AI安防系统技术实践
|
14天前
|
人工智能 监控 算法
基于无人机与AI视觉的矿山盗采智能监测系统技术解析
本文提出融合无人机与AI的三维监管方案。通过全天候视频覆盖、AI车辆识别与行为分析、数据闭环管理及动态算法迭代,实现对矿区24小时智能监控,大幅提升响应效率与监管精度,有效降低人工成本,保障矿区安全。
60 6
|
1月前
|
机器学习/深度学习 传感器 人工智能
AI与智能驾驶的关系和原理:技术融合与未来展望-优雅草卓伊凡
AI与智能驾驶的关系和原理:技术融合与未来展望-优雅草卓伊凡
65 3
AI与智能驾驶的关系和原理:技术融合与未来展望-优雅草卓伊凡

热门文章

最新文章