【python】python懂车帝数据可视化(代码+报告)

简介: 【python】python懂车帝数据可视化(代码+报告)


👉博__主👈:米码收割机

👉技__能👈:C++/Python语言

👉公众号👈:测试开发自动化【获取源码+商业合作】

👉荣__誉👈:阿里云博客专家博主、51CTO技术博主

👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。



一、研究背景

在当今社会,汽车已经成为人们生活中不可或缺的一部分,而汽车的购车决策往往受到各种因素的影响。为了更好地了解市场上不同汽车的价格分布情况,以及为购车者提供更全面的信息,我们对懂车帝网站上的汽车数据进行了深入研究和分析。该数据包含了各种品牌和型号的汽车,涵盖了最低价、最高价等关键信息,为我们提供了一个全面洞察汽车市场的机会。

总体而言,通过对懂车帝网站上爬取的汽车数据进行综合分析,我们有望揭示汽车市场中价格的分布特征,为购车者提供更为全面的参考,为汽车制造商提供更为明智的市场定价策略,促使汽车市场更好地满足消费者需求,推动整个行业的可持续发展。

👇👇👇 关注公众号,回复 “二手车可视化” 获取源码👇👇👇


二、研究目的

本研究的目的在于深入分析懂车帝网站上的汽车数据,主要关注汽车的最低价和最高价这两个关键指标。通过对这些价格数据的综合研究,我们旨在揭示不同汽车在市场上的价格分布情况,以及探究价格背后可能存在的因素。具体而言,我们的研究目的包括以下几个方面

首先,我们旨在了解不同汽车型号的最低价和最高价的分布特征。通过对这两个关键价格指标的统计学分析,我们可以得知市场上汽车价格的整体水平和波动情况。这有助于消费者更全面地了解不同车型在价格上的差异,为购车决策提供更为明智的依据。

其次,我们将通过分析最低价和最高价的最大、最小、中位数和方差等统计指标,揭示价格分布的规律。通过了解价格的最大值和最小值,我们可以确定市场上价格最高和最低的汽车型号,为购车者提供关键信息。同时,中位数和方差的分析将揭示价格的中间趋势和波动幅度,有助于我们更全面地了解市场的价格变化趋势。


三、数据采集过程

3.1 反爬情况

从提供的代码中,虽然没有直接看到网站反爬虫的措施,但我们可以根据代码的一些特征和编写方式来进行分析。以下是一些可能的反爬情况的分析

1. UserAgent头部

代码中设置了请求头的UserAgent字段,模拟了浏览器访问,这是常见的反爬手段。一些网站会检测UserAgent,如果发现是爬虫或非正常浏览器访问,可能会限制或拒绝访问。

headers = {
    "UserAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"
}

2. IP封锁或限制

在较为严格的反爬情况下,网站可能会对请求的IP地址进行监控。频繁的大量请求可能导致IP被封锁或限制访问。为了规避这种情况,可以考虑使用代理池,轮换IP进行请求。

3. 请求频率控制

代码中没有显式的设置请求频率控制,但在实际爬取中,为了规避被反爬,建议合理控制请求频率,避免短时间内发送过多请求。

👇👇👇 关注公众号,回复 “二手车可视化” 获取源码👇👇👇

3.2 爬取过程

这段爬取数据的代码主要包括两个Python脚本懂车帝爬虫.py 和 懂车帝可视化.py。首先,我们来分析懂车帝爬虫.py中的数据爬取过程

1. 爬取数据源

使用requests库向懂车帝网站发送HTTP请求,模拟浏览器访问行为。

通过json()方法解析HTTP响应,获取JSON格式的汽车信息数据。

url = f"https://www.dongchedi.com/motor/pc/car/rank_data?aid=1839&app_name=auto_web_pc&city_name=%E5%8C%97%E4%BA%AC&count=10&offset={i}&month=202311&new_energy_type=&rank_data_type=11&brand_id=&price=&manufacturer=&outter_detail_type=&nation=0"
response = requests.get(url=url, headers=headers)
cars_msg = response.json()["data"]["list"]

👇👇👇 关注公众号,回复 “二手车可视化” 获取源码👇👇👇

2. 数据提取

使用for循环遍历每一组汽车信息,提取车名、图片链接、最低价、最高价、品牌等关键信息。

将提取的信息以列表形式存储在car列表中。

for message in cars_msg:
    car_name = message["series_name"]  # 车名
    car_img = message["image"]  # 图片链接
    car_price_lower, car_price_upper = message["price"].split("万")[0].split("")  # 最低/高价
    car_brand = message["sub_brand_name"]  # 商标名称
    car.append([car_name, car_brand, car_price_lower, car_price_upper, car_img])

3. 数据保存

将爬取的汽车信息以CSV格式保存在名为data.csv的文件中。

with open('data.csv', 'w', newline='') as csv_file:
    csv_writer = csv.writer(csv_file)
    csv_writer.writerows(car)

四、数据展示

4.1 数据预处理

包括处理异常值、缺失值以及计算最高价和最低价之差。不过,如果需要进一步的数据预处理,可以考虑以下几个方面:

数据类型转换:

确保价格列(最低价和最高价)的数据类型为数值型,以便进行后续的统计和可视化操作。

#将最低价和最高价转换为数值型
data['最低价'] = pd.to_numeric(data['最低价'], errors='coerce')
data['最高价'] = pd.to_numeric(data['最高价'], errors='coerce')
# 删除包含缺失值的行
data = data.dropna()
# 或者使用均值进行填充
data['最低价'].fillna(data['最低价'].mean(), inplace=True)
data['最高价'].fillna(data['最高价'].mean(), inplace=True)
其他数据清洗:
根据实际需求进行其他数据清洗操作,比如去除重复值、转换日期格式等。
# 去除重复值
data = data.drop_duplicates()

👇👇👇 关注公众号,回复 “二手车可视化” 获取源码👇👇👇

4.2 数据可视化

可视化部分的代码主要使用了matplotlib和wordcloud库,涵盖了柱状图、折线图、饼状图以及词云图的绘制。下面对每个可视化部分进行分析

  1. 柱状图最低价前十名和最高价前十名
    使用plt.bar函数分别绘制了最低价和最高价前十名的柱状图,通过颜色的选择使得图表更加直观。图表的横轴为车名,纵轴为价格。这样的柱状图清晰地展示了最低价和最高价的排名前十的车型,方便用户对价格的比较。

👇👇👇 关注公众号,回复 “二手车可视化” 获取源码👇👇👇

2. 折线图品牌 vs 最高价

使用plt.plot函数绘制了品牌与最高价的折线图,通过标明不同品牌,观察它们在最高价上的分布情况。这样的折线图有助于观察品牌之间的价格趋势。

3. 饼状图品牌占比

使用plt.pie函数绘制了品牌占比的饼状图,通过颜色和标签的搭配,直观地展示了不同品牌在数据集中的占比情况。

👇👇👇 关注公众号,回复 “二手车可视化” 获取源码👇👇👇

4. 词云图车名词云

使用WordCloud库绘制了车名的词云图。通过将车名的频次转化为图形展示,可以更形象地反映出车名的分布情况。

👇👇👇 关注公众号,回复 “二手车可视化” 获取源码👇👇👇


相关文章
|
2天前
|
缓存 测试技术 数据安全/隐私保护
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第29天】本文通过深入浅出的方式,探讨了Python装饰器的概念、使用场景和实现方法。文章不仅介绍了装饰器的基本知识,还通过实例展示了如何利用装饰器优化代码结构,提高代码的可读性和重用性。适合初学者和有一定经验的开发者阅读,旨在帮助读者更好地理解和应用装饰器,提升编程效率。
|
9天前
|
开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第22天】在Python的世界里,装饰器是一个强大的工具,它能够让我们以简洁的方式修改函数的行为,增加额外的功能而不需要重写原有代码。本文将带你了解装饰器的基本概念,并通过实例展示如何一步步构建自己的装饰器,从而让你的代码更加高效、易于维护。
|
6天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
10 3
|
10天前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
32 7
|
9天前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
13 5
|
10天前
|
开发框架 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第20天】在编程的海洋中,简洁与强大是航行的双桨。Python的装饰器,这一高级特性,恰似海风助力,让代码更优雅、功能更强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一步步深入其内涵与意义。
|
10天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
【10月更文挑战第20天】本文旨在为编程新手提供一个简洁明了的入门指南,通过Python语言实现数据可视化。我们会介绍如何安装必要的库、理解数据结构,并利用这些知识来创建基本图表。文章将用通俗易懂的语言和示例代码,帮助读者快速掌握数据可视化的基础技能。
21 4
|
8天前
|
机器学习/深度学习 缓存 数据挖掘
Python性能优化:提升你的代码效率
【10月更文挑战第22天】 Python性能优化:提升你的代码效率
10 1
|
11天前
|
机器人 Shell Linux
【Azure Bot Service】部署Python ChatBot代码到App Service中
本文介绍了使用Python编写的ChatBot在部署到Azure App Service时遇到的问题及解决方案。主要问题是应用启动失败,错误信息为“Failed to find attribute 'app' in 'app'”。解决步骤包括:1) 修改`app.py`文件,添加`init_func`函数;2) 配置`config.py`,添加与Azure Bot Service认证相关的配置项;3) 设置App Service的启动命令为`python3 -m aiohttp.web -H 0.0.0.0 -P 8000 app:init_func`。
|
15天前
|
数据处理 开发者 Python
Python中的列表推导式:一种优雅的代码简化技巧####
【10月更文挑战第15天】 本文将深入浅出地探讨Python中列表推导式的使用,这是一种强大且简洁的语法结构,用于从现有列表生成新列表。通过具体示例和对比传统循环方法,我们将揭示列表推导式如何提高代码的可读性和执行效率,同时保持语言的简洁性。无论你是Python初学者还是有经验的开发者,掌握这一技能都将使你的编程之旅更加顺畅。 ####
18 1