基于yolov2深度学习网络的人脸检测matlab仿真,图像来自UMass数据集

简介: **YOLOv2算法在MATLAB2022a中实现人脸检测:**展示6个检测结果图,利用Darknet-19进行特征提取,网络每个网格预测BBox,包含中心偏移、尺寸、置信度和类别概率。多任务损失函数结合定位、置信度和分类误差。程序加载预训练模型,遍历图像,对检测到的人脸以0.15阈值画出边界框并显示。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
YOLOv2是由Joseph Redmon等人在2016年提出的实时目标检测算法,其核心理念是在单个神经网络中一次性完成对整幅图像的预测。对于人脸检测任务,YOLOv2通过端到端的学习,能够在整个图像上直接预测出人脸的位置和大小。

3.1 网络架构与特征提取
YOLOv2基于Darknet-19卷积神经网络进行特征提取,该网络包含19层卷积操作,用于从输入图像中提取丰富的特征信息。每个卷积层后可能跟随批量归一化层(Batch Normalization)、Leaky ReLU激活函数等组件以提升网络性能。

3.2 输出表示
YOLOv2将图像划分为S×S 的网格(例如7×77×7)。对于每个网格单元,网络预测多个边界框(BoundingBox, BBox),每个BBox由以下五部分组成:

7.png

其中,

x,y 是相对于网格单元左上角的预测框中心的偏移量。
ℎw,h 是预测框的宽度和高度(相对于整幅图像的比例)。
c 是置信度得分,表示预测框内包含人脸的概率以及预测框与真实框的IOU(Intersection over Union)。
此外,对于每一个预测框,还会预测一个额外的变量集合,代表人脸类别的条件概率:

8.png

即在给定框内存在目标的情况下,是人脸的概率。

3.3损失函数设计
YOLOv2使用多任务损失函数,包括定位误差、置信度误差和分类误差三部分:

定位误差:采用平方误差来计算预测框位置与实际框位置之间的差距。

9.png

3.4预测阶段
在推理阶段,首先根据阈值筛选掉置信度较低的预测框,并对剩余框进行非极大抑制(Non-Maximum Suppression, NMS)处理,去除冗余预测,最终得到图像中的人脸检测结果。

4.部分核心程序

```load yolov2.mat% 加载训练好的目标检测器
img_size= [224,224];
imgPath = 'test/'; % 图像库路径
imgDir = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt = 0;
for i = 1:8 % 遍历结构体就可以一一处理图片了
i
if mod(i,1)==0
figure
end
cnt = cnt+1;
subplot(1,1,cnt);
img = imread([imgPath imgDir(i).name]); %读取每张图片
I = imresize(img,img_size(1:2));
[bboxes,scores] = detect(detector,I,'Threshold',0.15);
if ~isempty(bboxes) % 如果检测到目标
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,LineWidth=2);% 在图像上绘制检测结果
end

subplot(1,1,cnt); 
imshow(I, []);  % 显示带有检测结果的图像

pause(0.01);% 等待一小段时间,使图像显示更流畅
if cnt==1
   cnt=0;
end

end

```

相关文章
|
5天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
5天前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
|
5天前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
|
6天前
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
6天前
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
6天前
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
6天前
|
机器学习/深度学习 资源调度 PyTorch
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
|
6天前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
|
30天前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
12天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
29 1

热门文章

最新文章