基于yolov2深度学习网络的人脸检测matlab仿真,图像来自UMass数据集

简介: **YOLOv2算法在MATLAB2022a中实现人脸检测:**展示6个检测结果图,利用Darknet-19进行特征提取,网络每个网格预测BBox,包含中心偏移、尺寸、置信度和类别概率。多任务损失函数结合定位、置信度和分类误差。程序加载预训练模型,遍历图像,对检测到的人脸以0.15阈值画出边界框并显示。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
YOLOv2是由Joseph Redmon等人在2016年提出的实时目标检测算法,其核心理念是在单个神经网络中一次性完成对整幅图像的预测。对于人脸检测任务,YOLOv2通过端到端的学习,能够在整个图像上直接预测出人脸的位置和大小。

3.1 网络架构与特征提取
YOLOv2基于Darknet-19卷积神经网络进行特征提取,该网络包含19层卷积操作,用于从输入图像中提取丰富的特征信息。每个卷积层后可能跟随批量归一化层(Batch Normalization)、Leaky ReLU激活函数等组件以提升网络性能。

3.2 输出表示
YOLOv2将图像划分为S×S 的网格(例如7×77×7)。对于每个网格单元,网络预测多个边界框(BoundingBox, BBox),每个BBox由以下五部分组成:

7.png

其中,

x,y 是相对于网格单元左上角的预测框中心的偏移量。
ℎw,h 是预测框的宽度和高度(相对于整幅图像的比例)。
c 是置信度得分,表示预测框内包含人脸的概率以及预测框与真实框的IOU(Intersection over Union)。
此外,对于每一个预测框,还会预测一个额外的变量集合,代表人脸类别的条件概率:

8.png

即在给定框内存在目标的情况下,是人脸的概率。

3.3损失函数设计
YOLOv2使用多任务损失函数,包括定位误差、置信度误差和分类误差三部分:

定位误差:采用平方误差来计算预测框位置与实际框位置之间的差距。

9.png

3.4预测阶段
在推理阶段,首先根据阈值筛选掉置信度较低的预测框,并对剩余框进行非极大抑制(Non-Maximum Suppression, NMS)处理,去除冗余预测,最终得到图像中的人脸检测结果。

4.部分核心程序

```load yolov2.mat% 加载训练好的目标检测器
img_size= [224,224];
imgPath = 'test/'; % 图像库路径
imgDir = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt = 0;
for i = 1:8 % 遍历结构体就可以一一处理图片了
i
if mod(i,1)==0
figure
end
cnt = cnt+1;
subplot(1,1,cnt);
img = imread([imgPath imgDir(i).name]); %读取每张图片
I = imresize(img,img_size(1:2));
[bboxes,scores] = detect(detector,I,'Threshold',0.15);
if ~isempty(bboxes) % 如果检测到目标
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,LineWidth=2);% 在图像上绘制检测结果
end

subplot(1,1,cnt); 
imshow(I, []);  % 显示带有检测结果的图像

pause(0.01);% 等待一小段时间,使图像显示更流畅
if cnt==1
   cnt=0;
end

end

```

相关文章
|
21天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
24天前
基于MATLAB实现机器视觉中通过单幅图像实现测量长度面积
基于MATLAB实现机器视觉中通过单幅图像实现测量长度面积
65 1
|
28天前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
29天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
|
1月前
|
机器学习/深度学习 算法 5G
基于DNN深度神经网络的OFDM+QPSK信号检测与误码率matlab仿真
本内容展示了基于深度神经网络(DNN)的OFDM-QPSK信号检测算法在Matlab2022a中的仿真效果。通过构建包含多层全连接层和ReLU激活函数的DNN模型,结合信号预处理与特征提取,实现了复杂通信环境下的高效信号检测。仿真结果对比了传统LS、MMSE方法与DNN方法在不同信噪比(SNR)条件下的误码率(BER)和符号错误率(SER),验证了DNN方法的优越性能。核心程序涵盖了QPSK调制、导频插入、OFDM发射、信道传输及DNN预测等关键步骤,为现代通信系统提供了可靠的技术支持。
27 0
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
11月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
435 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
11月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
423 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码