面试官问10W 行级别数据的 Excel 导入如何10秒处理

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 面试官问10W 行级别数据的 Excel 导入如何10秒处理

需求说明

项目中有一个 Excel 导入的需求:缴费记录导入

由实施 / 用户 将别的系统的数据填入我们系统中的 Excel 模板,应用将文件内容读取、校对、转换之后产生欠费数据、票据、票据详情并存储到数据库中。

在我接手之前可能由于之前导入的数据量并不多没有对效率有过高的追求。但是到了 4.0 版本,我预估导入时Excel 行数会是 10w+ 级别,而往数据库插入的数据量是大于 3n 的,也就是说 10w 行的 Excel,则至少向数据库插入 30w 行数据。

因此优化原来的导入代码是势在必行的。我逐步分析和优化了导入的代码,使之在百秒内完成(最终性能瓶颈在数据库的处理速度上,测试服务器 4g 内存不仅放了数据库,还放了很多微服务应用。处理能力不太行)。具体的过程如下,每一步都有列出影响性能的问题和解决的办法。

导入 Excel 的需求在系统中还是很常见的,我的优化办法可能不是最优的,欢迎读者在评论区留言交流提供更优的思路

一些细节

数据导入:导入使用的模板由系统提供,格式是 xlsx (支持 65535+行数据) ,用户按照表头在对应列写入相应的数据

数据校验:数据校验有两种:

  • 字段长度、字段正则表达式校验等,内存内校验不存在外部数据交互。对性能影响较小
  • 数据重复性校验,如票据号是否和系统已存在的票据号重复(需要查询数据库,十分影响性能)

数据插入:测试环境数据库使用 MySQL 5.7,未分库分表,连接池使用 Druid

迭代记录

第一版:POI + 逐行查询校对 + 逐行插入

这个版本是最古老的版本,采用原生 POI,手动将 Excel 中的行映射成 ArrayList 对象,然后存储到 List<ArrayList> ,代码执行的步骤如下:1.手动读取 Excel 成 List<ArrayList>2.循环遍历,在循环中进行以下步骤

  • 检验字段长度
  • 一些查询数据库的校验,比如校验当前行欠费对应的房屋是否在系统中存在,需要查询房屋表
  • 写入当前行数据

3.返回执行结果,如果出错 / 校验不合格。则返回提示信息并回滚数据显而易见的,这样实现一定是赶工赶出来的,后续可能用的少也没有察觉到性能问题,但是它最多适用于个位数/十位数级别的数据。存在以下明显的问题:

  • 查询数据库的校验对每一行数据都要查询一次数据库,应用访问数据库来回的网络IO次数被放大了 n 倍,时间也就放大了 n 倍
  • 写入数据也是逐行写入的,问题和上面的一样
  • 数据读取使用原生 POI,代码十分冗余,可维护性差。

第二版:EasyPOI + 缓存数据库查询操作 + 批量插入

针对第一版分析的三个问题,分别采用以下三个方法优化

缓存数据,以空间换时间

逐行查询数据库校验的时间成本主要在来回的网络IO中,优化方法也很简单。将参加校验的数据全部缓存到 HashMap 中。直接到 HashMap 去命中。

例如:校验行中的房屋是否存在,原本是要用 区域 + 楼宇 + 单元 + 房号 去查询房屋表匹配房屋ID,查到则校验通过,生成的欠单中存储房屋ID,校验不通过则返回错误信息给用户。

而房屋信息在导入欠费的时候是不会更新的。并且一个小区的房屋信息也不会很多(5000以内)因此我采用一条SQL,将该小区下所有的房屋以 区域/楼宇/单元/房号 作为 key,以 房屋ID 作为 value,存储到 HashMap 中,后续校验只需要在 HashMap 中命中自定义 SessionMapperMybatis 原生是不支持将查询到的结果直接写人一个 HashMap 中的,需要自定义 SessionMapperSessionMapper 中指定使用 MapResultHandler 处理 SQL 查询的结果集

@Repository
public class SessionMapper extends SqlSessionDaoSupport {
    @Resource
    public void setSqlSessionFactory(SqlSessionFactory sqlSessionFactory) {
        super.setSqlSessionFactory(sqlSessionFactory);
    }
 
    // 区域楼宇单元房号 - 房屋ID
    @SuppressWarnings("unchecked")
    public Map<String, Long> getHouseMapByAreaId(Long areaId) {
        MapResultHandler handler = new MapResultHandler();
 
 this.getSqlSession().select(BaseUnitMapper.class.getName()+".getHouseMapByAreaId", areaId, handler);
        Map<String, Long> map = handler.getMappedResults();
        return map;
    }
}

MapResultHandler 处理程序,将结果集放入 HashMap

public class MapResultHandler implements ResultHandler {
    private final Map mappedResults = new HashMap();
    @Override
    public void handleResult(ResultContext context) {
        @SuppressWarnings("rawtypes")
        Map map = (Map)context.getResultObject();
        mappedResults.put(map.get("key"), map.get("value"));
    }
 
    public Map getMappedResults() {
        return mappedResults;
    }
}

示例 Mapper

@Mapper
@Repository 
public interface BaseUnitMapper {
    // 收费标准绑定 区域楼宇单元房号 - 房屋ID
    Map<String, Long> getHouseMapByAreaId(@Param("areaId") Long areaId);
}

示例 Mapper.xml

<select id="getHouseMapByAreaId" resultMap="mapResultLong">
    SELECT
        CONCAT( h.bulid_area_name, h.build_name, h.unit_name, h.house_num ) k,
        h.house_id v
    FROM
        base_house h
    WHERE
        h.area_id = #{areaId}
    GROUP BY
        h.house_id
</select>
<resultMap id="mapResultLong" type="java.util.HashMap">
    <result property="key" column="k" javaType="string" jdbcType="VARCHAR"/>
    <result property="value" column="v" javaType="long" jdbcType="INTEGER"/>
</resultMap>

之后在代码中调用 SessionMapper 类对应的方法即可。

使用 values 批量插入

MySQL insert 语句支持使用 values (),(),() 的方式一次插入多行数据,通过 mybatis foreach 结合 java 集合可以实现批量插入,代码写法如下:

<insert id="insertList">
    insert into table(colom1, colom2)
    values
    <foreach collection="list" item="item" index="index" separator=",">
        ( #{item.colom1}, #{item.colom2})
    </foreach>
</insert>

使用 EasyPOI 读写 Excel

EasyPOI 采用基于注解的导入导出,修改注解就可以修改Excel,非常方便,代码维护起来也容易。

第三版:EasyExcel + 缓存数据库查询操作 + 批量插入

第二版采用 EasyPOI 之后,对于几千、几万的 Excel 数据已经可以轻松导入了,不过耗时有点久(5W 数据 10分钟左右写入到数据库)不过由于后来导入的操作基本都是开发在一边看日志一边导入,也就没有进一步优化。

但是好景不长,有新小区需要迁入,票据 Excel 有 41w 行,这个时候使用 EasyPOI 在开发环境跑直接就 OOM 了,增大 JVM 内存参数之后,虽然不 OOM 了,但是 CPU 占用 100% 20 分钟仍然未能成功读取全部数据。故在读取大 Excel 时需要再优化速度。莫非要我这个渣渣去深入 POI 优化了吗?

别慌,先上 GITHUB 找找别的开源项目。这时阿里 EasyExcel 映入眼帘:

EasyExcel 采用和 EasyPOI 类似的注解方式读写 Excel,因此从 EasyPOI 切换过来很方便,分分钟就搞定了。

也确实如阿里大神描述的:41w行、25列、45.5m 数据读取平均耗时 50s,因此对于大 Excel 建议使用 EasyExcel 读取。

第四版:优化数据插入速度

在第二版插入的时候,我使用了 values 批量插入代替逐行插入。每 30000 行拼接一个长 SQL、顺序插入。整个导入方法这块耗时最多,非常拉跨。后来我将每次拼接的行数减少到 10000、5000、3000、1000、500 发现执行最快的是 1000。

结合网上一些对 innodb_buffer_pool_size 描述我猜是因为过长的 SQL 在写操作的时候由于超过内存阈值,发生了磁盘交换。限制了速度,另外测试服务器的数据库性能也不怎么样,过多的插入他也处理不过来。所以最终采用每次 1000 条插入。

每次 1000 条插入后,为了榨干数据库的 CPU,那么网络IO的等待时间就需要利用起来,这个需要多线程来解决,而最简单的多线程可以使用 并行流 来实现,接着我将代码用并行流来测试了一下:10w行的 excel、42w 欠单、42w记录详情、2w记录、16 线程并行插入数据库、每次 1000 行。插入时间 72s,导入总时间 95 s。

并行插入工具类

并行插入的代码我封装了一个函数式编程的工具类,也提供给大家

/**
 * 功能:利用并行流快速插入数据
 *
 * @author Keats
 * @date 2020/7/1 9:25
 */
public class InsertConsumer {
    /**
     * 每个长 SQL 插入的行数,可以根据数据库性能调整
     */
    private final static int SIZE = 1000;
    /**
     * 如果需要调整并发数目,修改下面方法的第二个参数即可
     */
    static {
        System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "4");
    }
 
    /**
     * 插入方法
     *
     * @param list 插入数据集合
     * @param consumer 消费型方法,直接使用 mapper::method 方法引用的方式
     * @param <T> 插入的数据类型
     */
    public static <T> void insertData(List<T> list, Consumer<List<T>> consumer) {
        if (list == null || list.size() < 1) {
            return;
        }
 
        List<List<T>> streamList = new ArrayList<>();
 
        for (int i = 0; i < list.size(); i += SIZE) {
            int j = Math.min((i + SIZE), list.size());
            List<T> subList = list.subList(i, j);
            streamList.add(subList);
        }
        // 并行流使用的并发数是 CPU 核心数,不能局部更改。全局更改影响较大,斟酌
        streamList.parallelStream().forEach(consumer);
    }
}

这里多数使用到很多 Java8 的API,不了解的朋友可以翻看我之前关于 Java 的博客。方法使用起来很简单

InsertConsumer.insertData(feeList, arrearageMapper::insertList);

其他影响性能的内容

日志

避免在 for 循环中打印过多的 info 日志

在优化的过程中,我还发现了一个特别影响性能的东西:info 日志,还是使用 41w行、25列、45.5m 数据,在 开始-数据读取完毕 之间每 1000 行打印一条 info 日志,缓存校验数据-校验完毕 之间每行打印 3+ 条 info 日志,日志框架使用 Slf4j 。打印并持久化到磁盘。下面是打印日志和不打印日志效率的差别打印日志

不打印日志

我以为是我选错 Excel 文件了,又重新选了一次,结果依旧

缓存校验数据-校验完毕 不打印日志耗时仅仅是打印日志耗时的 1/10 !

总结

提升Excel导入速度的方法:

  • 使用更快的 Excel 读取框架(推荐使用阿里 EasyExcel)
  • 对于需要与数据库交互的校验、按照业务逻辑适当的使用缓存。用空间换时间
  • 使用 values(),(),() 拼接长 SQL 一次插入多行数据
  • 使用多线程插入数据,利用掉网络IO等待时间(推荐使用并行流,简单易用)
  • 避免在循环中打印无用的日志
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
24天前
|
数据采集 存储 JavaScript
自动化数据处理:使用Selenium与Excel打造的数据爬取管道
本文介绍了一种使用Selenium和Excel结合代理IP技术从WIPO品牌数据库(branddb.wipo.int)自动化爬取专利信息的方法。通过Selenium模拟用户操作,处理JavaScript动态加载页面,利用代理IP避免IP封禁,确保数据爬取稳定性和隐私性。爬取的数据将存储在Excel中,便于后续分析。此外,文章还详细介绍了Selenium的基本设置、代理IP配置及使用技巧,并探讨了未来可能采用的更多防反爬策略,以提升爬虫效率和稳定性。
|
10天前
|
存储 缓存 关系型数据库
滴滴面试:单表可以存200亿数据吗?单表真的只能存2000W,为什么?
40岁老架构师尼恩在其读者交流群中分享了一系列关于InnoDB B+树索引的面试题及解答。这些问题包括B+树的高度、存储容量、千万级大表的优化、单表数据量限制等。尼恩详细解释了InnoDB的存储结构、B+树的磁盘文件格式、索引数据结构、磁盘I/O次数和耗时,以及Buffer Pool缓存机制对性能的影响。他还提供了实际操作步骤,帮助读者通过元数据找到B+树的高度。尼恩强调,通过系统化的学习和准备,可以大幅提升面试表现,实现“offer直提”。相关资料和PDF可在其公众号【技术自由圈】获取。
|
21天前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
41 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
15天前
|
监控 Java easyexcel
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
43 1
|
24天前
|
easyexcel Java UED
SpringBoot中大量数据导出方案:使用EasyExcel并行导出多个excel文件并压缩zip后下载
在SpringBoot环境中,为了优化大量数据的Excel导出体验,可采用异步方式处理。具体做法是将数据拆分后利用`CompletableFuture`与`ThreadPoolTaskExecutor`并行导出,并使用EasyExcel生成多个Excel文件,最终将其压缩成ZIP文件供下载。此方案提升了导出效率,改善了用户体验。代码示例展示了如何实现这一过程,包括多线程处理、模板导出及资源清理等关键步骤。
|
2月前
|
SQL C# 数据库
EPPlus库的安装和使用 C# 中 Excel的导入和导出
本文介绍了如何使用EPPlus库在C#中实现Excel的导入和导出功能。首先,通过NuGet包管理器安装EPPlus库,然后提供了将DataGridView数据导出到Excel的步骤和代码示例,包括将DataGridView转换为DataTable和使用EPPlus将DataTable导出为Excel文件。接着,介绍了如何将Excel数据导入到数据库中,包括读取Excel文件、解析数据、执行SQL插入操作。
EPPlus库的安装和使用 C# 中 Excel的导入和导出
|
18天前
|
存储 关系型数据库 MySQL
面试官:MySQL一次到底插入多少条数据合适啊?
本文探讨了数据库插入操作的基础知识、批量插入的优势与挑战,以及如何确定合适的插入数据量。通过面试对话的形式,详细解析了单条插入与批量插入的区别,磁盘I/O、内存使用、事务大小和锁策略等关键因素。最后,结合MyBatis框架,提供了实际应用中的批量插入策略和优化建议。希望读者不仅能掌握技术细节,还能理解背后的原理,从而更好地优化数据库性能。
|
21天前
|
存储 大数据 数据库
Android经典面试题之Intent传递数据大小为什么限制是1M?
在 Android 中,使用 Intent 传递数据时存在约 1MB 的大小限制,这是由于 Binder 机制的事务缓冲区限制、Intent 的设计初衷以及内存消耗和性能问题所致。推荐使用文件存储、SharedPreferences、数据库存储或 ContentProvider 等方式传递大数据。
34 0
|
2月前
|
数据采集 存储 数据挖掘
使用Python读取Excel数据
本文介绍了如何使用Python的`pandas`库读取和操作Excel文件。首先,需要安装`pandas`和`openpyxl`库。接着,通过`read_excel`函数读取Excel数据,并展示了读取特定工作表、查看数据以及计算平均值等操作。此外,还介绍了选择特定列、筛选数据和数据清洗等常用操作。`pandas`是一个强大且易用的工具,适用于日常数据处理工作。
|
3月前
|
SQL JSON 关系型数据库
n种方式教你用python读写excel等数据文件
n种方式教你用python读写excel等数据文件