m基于深度学习网络的中药识别系统matlab仿真,包含GUI界面

简介: 在MATLAB 2022a中,一个基于GoogLeNet的中药识别系统展示了其仿真效果,通过6张图像展示了识别流程。该系统利用深度学习解决传统识别方法的局限,尤其是借助CNN自动提取中药图像特征。核心程序涉及数据集加载、分割、预训练模型加载以及网络调整,如替换GoogLeNet的特征学习层和分类器层以适应中药分类任务。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法涉及理论知识概要
中药识别是中医药领域中的一项重要任务,对于确保药品质量、保障用药安全具有重要意义。传统的中药识别方法主要依赖人工经验和形态特征,但存在主观性强、效率低下等问题。近年来,深度学习在图像识别领域取得了显著进展,为中药识别提供了新的解决方案。中药作为我国传统的医学瑰宝,其种类繁多,形态各异,识别难度较大。传统的中药识别方法主要依赖药师的视觉判断和经验积累,但受到个人知识水平和主观因素的影响,识别准确率难以保证。随着计算机视觉和深度学习技术的发展,基于深度学习网络的中药识别系统成为研究的热点,其能够通过学习大量的中药图像数据,自动提取特征并进行分类识别,有效提高了识别的准确性和效率。

   深度学习是机器学习的一个分支,其通过构建多层的神经网络来模拟人脑的学习过程。在中药识别系统中,常用的深度学习网络模型包括卷积神经网络(Convolutional Neural Network, CNN)、深度置信网络(Deep Belief Network, DBN)和循环神经网络(Recurrent Neural Network, RNN)等。其中,CNN以其强大的图像特征提取能力在中药识别中得到广泛应用。

    CNN的基本结构包括输入层、卷积层、池化层、全连接层和输出层。卷积层负责提取图像的局部特征,通过卷积核与输入图像进行卷积运算得到特征图。池化层则对特征图进行下采样,降低数据的维度并保留重要信息。全连接层将前面提取的特征进行整合,并输出到分类器中进行分类识别。

   基于深度学习网络的中药识别系统通过构建层次化的特征提取网络结构,从原始图像中抽取高级抽象特征,进而通过全连接层和softmax层进行分类预测。训练过程中,系统利用反向传播算法调整网络参数以最大化预测准确率。

3.MATLAB核心程序
```Name1 = get(handles.edit7, 'String');
NEpochs = str2num(get(handles.edit8, 'String'));
NMB = str2num(get(handles.edit9, 'String'));
LR = str2num(get(handles.edit10, 'String'));
Rate = str2num(get(handles.edit11, 'String'));

% 使用 imageDatastore 加载图像数据集
Dataset = imageDatastore(Name1, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 将数据集分割为训练集、验证集和测试集
[Training_Dataset, Validation_Dataset, Testing_Dataset] = splitEachLabel(Dataset, Rate, (1-Rate)/2, (1-Rate)/2);
% 加载预训练的 GoogleNet 网络
load googlenet.mat

% 获取输入层的大小
Input_Layer_Size = net.Layers(1).InputSize(1:2);

% 将图像数据集调整为预训练网络的输入尺寸
Resized_Training_Dataset = augmentedImageDatastore(Input_Layer_Size ,Training_Dataset);
Resized_Validation_Dataset = augmentedImageDatastore(Input_Layer_Size ,Validation_Dataset);
Resized_Testing_Dataset = augmentedImageDatastore(Input_Layer_Size ,Testing_Dataset);

% 获取特征学习层和分类器层的名称
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;
% 计算数据集的类别数目
Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的全连接特征学习层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);
% 创建新的分类器层
New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 获取完整网络架构
Network_Architecture = layerGraph(net);
% 替换网络中的特征学习层和分类器层
New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);
```

相关文章
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
4天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
6月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
6月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)