m基于深度学习网络的中药识别系统matlab仿真,包含GUI界面

简介: 在MATLAB 2022a中,一个基于GoogLeNet的中药识别系统展示了其仿真效果,通过6张图像展示了识别流程。该系统利用深度学习解决传统识别方法的局限,尤其是借助CNN自动提取中药图像特征。核心程序涉及数据集加载、分割、预训练模型加载以及网络调整,如替换GoogLeNet的特征学习层和分类器层以适应中药分类任务。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法涉及理论知识概要
中药识别是中医药领域中的一项重要任务,对于确保药品质量、保障用药安全具有重要意义。传统的中药识别方法主要依赖人工经验和形态特征,但存在主观性强、效率低下等问题。近年来,深度学习在图像识别领域取得了显著进展,为中药识别提供了新的解决方案。中药作为我国传统的医学瑰宝,其种类繁多,形态各异,识别难度较大。传统的中药识别方法主要依赖药师的视觉判断和经验积累,但受到个人知识水平和主观因素的影响,识别准确率难以保证。随着计算机视觉和深度学习技术的发展,基于深度学习网络的中药识别系统成为研究的热点,其能够通过学习大量的中药图像数据,自动提取特征并进行分类识别,有效提高了识别的准确性和效率。

   深度学习是机器学习的一个分支,其通过构建多层的神经网络来模拟人脑的学习过程。在中药识别系统中,常用的深度学习网络模型包括卷积神经网络(Convolutional Neural Network, CNN)、深度置信网络(Deep Belief Network, DBN)和循环神经网络(Recurrent Neural Network, RNN)等。其中,CNN以其强大的图像特征提取能力在中药识别中得到广泛应用。

    CNN的基本结构包括输入层、卷积层、池化层、全连接层和输出层。卷积层负责提取图像的局部特征,通过卷积核与输入图像进行卷积运算得到特征图。池化层则对特征图进行下采样,降低数据的维度并保留重要信息。全连接层将前面提取的特征进行整合,并输出到分类器中进行分类识别。

   基于深度学习网络的中药识别系统通过构建层次化的特征提取网络结构,从原始图像中抽取高级抽象特征,进而通过全连接层和softmax层进行分类预测。训练过程中,系统利用反向传播算法调整网络参数以最大化预测准确率。

3.MATLAB核心程序
```Name1 = get(handles.edit7, 'String');
NEpochs = str2num(get(handles.edit8, 'String'));
NMB = str2num(get(handles.edit9, 'String'));
LR = str2num(get(handles.edit10, 'String'));
Rate = str2num(get(handles.edit11, 'String'));

% 使用 imageDatastore 加载图像数据集
Dataset = imageDatastore(Name1, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 将数据集分割为训练集、验证集和测试集
[Training_Dataset, Validation_Dataset, Testing_Dataset] = splitEachLabel(Dataset, Rate, (1-Rate)/2, (1-Rate)/2);
% 加载预训练的 GoogleNet 网络
load googlenet.mat

% 获取输入层的大小
Input_Layer_Size = net.Layers(1).InputSize(1:2);

% 将图像数据集调整为预训练网络的输入尺寸
Resized_Training_Dataset = augmentedImageDatastore(Input_Layer_Size ,Training_Dataset);
Resized_Validation_Dataset = augmentedImageDatastore(Input_Layer_Size ,Validation_Dataset);
Resized_Testing_Dataset = augmentedImageDatastore(Input_Layer_Size ,Testing_Dataset);

% 获取特征学习层和分类器层的名称
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;
% 计算数据集的类别数目
Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的全连接特征学习层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);
% 创建新的分类器层
New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 获取完整网络架构
Network_Architecture = layerGraph(net);
% 替换网络中的特征学习层和分类器层
New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);
```

相关文章
|
1天前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
21 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
1天前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
28 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
|
2天前
|
机器学习/深度学习 人工智能 算法
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 '美式足球', '棒球', '篮球', '台球', '保龄球', '板球', '足球', '高尔夫球', '曲棍球', '冰球', '橄榄球', '羽毛球', '乒乓球', '网球', '排球'等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。
18 7
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
|
4天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第50天】 随着人工智能技术的迅猛发展,深度学习已成为推动多个领域进步的关键力量。特别是在图像识别领域,深度学习模型如卷积神经网络(CNN)已表现出超越传统算法的性能。本文将探讨深度学习技术在自动驾驶系统中图像识别的实际应用,分析其在提高道路安全性和车辆自主性方面的潜力,并讨论面临的主要挑战及未来的发展方向。
|
4天前
|
机器学习/深度学习 算法 Python
深度学习初遇——自己动手实现三层神经网络
深度学习初遇——自己动手实现三层神经网络
23 4
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度揭秘:深度学习框架下的神经网络架构进化
从感知机到深度学习的革命,神经网络经历了从简单到复杂的演变。反向传播使多层网络实用化,深度信念网络(DBN)和卷积神经网络(CNN)的兴起,尤其是AlexNet在ImageNet竞赛中的胜利,开启了深度学习黄金时代。ResNet的残差学习解决了深度梯度消失问题。循环神经网络(RNN)、LSTM和GRU改进了序列处理,Transformer模型(如BERT和GPT)引领了自然语言处理的变革。超大规模模型如GPT-3和通义千问展示惊人能力,影响医疗、自动驾驶等多个领域。未来,平衡模型复杂度、计算成本与应用需求将是关键。
25 2
|
2天前
|
缓存 算法
基于机会网络编码(COPE)的卫星网络路由算法matlab仿真
**摘要:** 该程序实现了一个基于机会网络编码(COPE)的卫星网络路由算法,旨在提升无线网络的传输效率和吞吐量。在MATLAB2022a中测试,结果显示了不同数据流个数下的网络吞吐量。算法通过Dijkstra函数寻找路径,计算编码机会(Nab和Nx),并根据编码机会减少传输次数。当有编码机会时,中间节点执行编码和解码操作,优化传输路径。结果以图表形式展示,显示数据流与吞吐量的关系,并保存为`R0.mat`。COPE算法预测和利用编码机会,适应卫星网络的动态特性,提高数据传输的可靠性和效率。
|
20小时前
|
机器学习/深度学习 算法 固态存储
m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
20 8
|
4天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深入浅出:理解和实现深度学习中的卷积神经网络(CNN)
在当今的数据驱动世界,深度学习已经成为许多领域的关键技术。本文将深入探讨卷积神经网络(CNN)的原理、结构和应用,旨在帮助读者全面理解这项强大的技术,并提供实际的实现技巧。
20 0
|
1天前
|
机器学习/深度学习 人工智能 数据可视化
深度学习在图像识别中的应用与挑战
【6月更文挑战第22天】本文将深入探讨深度学习技术在图像识别领域的应用及其面临的挑战。首先,我们将介绍深度学习的基本概念和关键技术,然后详细解析其在图像识别中的具体应用,包括卷积神经网络(CNN)的工作原理和实例。最后,我们将讨论深度学习在图像识别领域面临的主要挑战,如过拟合、数据需求大和模型解释性差等问题,并提出可能的解决方案。

热门文章

最新文章