大模型开发:解释反向传播算法是如何工作的。

简介: 反向传播算法是训练神经网络的常用方法,尤其适用于多层前馈网络。它包括前向传播、计算损失、反向传播和迭代过程。首先,输入数据通过网络层层传递至输出层,计算预测值。接着,比较实际输出与期望值,计算损失。然后,从输出层开始,利用链式法则反向计算误差和权重的梯度。通过梯度下降等优化算法更新权重和偏置,以降低损失。此过程反复进行,直到损失收敛或达到预设训练轮数,优化模型性能,实现对新数据的良好泛化。

反向传播算法(Backpropagation Algorithm)是训练人工神经网络中最为广泛使用的算法之一,特别是在多层前馈神经网络中。以下是反向传播算法的基本工作原理:

  1. 前向传播(Feedforward)阶段

    • 输入数据首先通过网络的输入层进入,经过一系列的隐藏层(如果有),最后到达输出层。
    • 在每个神经元上,都会执行一个线性组合(加权求和),加上一个偏置项,然后通过一个激活函数(如Sigmoid、ReLU等)产生输出。这个过程沿着神经网络从前向后逐层进行,形成网络的预测输出。
  2. 计算损失(Loss Computation)

    • 将模型的实际输出与真实的期望输出(标记值)进行比较,计算损失函数的值,例如均方误差(MSE)用于回归任务,交叉熵损失用于分类任务。
  3. 反向传播(Backward Propagation)阶段

    • 误差计算:从输出层开始,计算实际输出与目标输出之间的误差(也称为残差)。误差信号通常表示为损失函数相对于输出神经元激活值的偏导数。
    • 梯度计算:利用链式法则(Chain Rule)将误差反向传播到网络中的每一层。对于每一个权重和偏置项,我们计算损失函数对该权重或偏置的梯度,这是损失函数关于该参数的局部变化率。
    • 权重更新:一旦获得了所有权重和偏置的梯度,就可以使用优化算法(如梯度下降法)来更新这些参数。通常,我们会按照梯度的负方向调整权重,以减小损失函数的值,从而使模型在下一次迭代时更接近最优解。
  4. 迭代过程

    • 反复进行以上步骤,即每次通过前向传播计算预测结果,再通过反向传播计算梯度并更新参数,直到损失函数收敛到一定程度,或者达到预定的训练轮数。

简而言之,反向传播算法的核心是通过遍历网络从后往前逐层计算梯度,然后使用这些梯度信息调整网络的权重和偏置,以逐步优化模型的性能。这个过程是自动微分在神经网络训练中的应用,它让模型能够自我调整,以期拟合训练数据,并在新的未知数据上具备良好的泛化能力。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
3月前
|
人工智能 自然语言处理 算法
首届大模型顶会COLM 高分论文:偏好搜索算法PairS,让大模型进行文本评估更高效
【8月更文挑战第26天】在人工智能领域,尽管大型语言模型(LLMs)作为自动评估工具展现了巨大潜力,但在自然语言生成质量评估中仍存偏见问题,且难以确保一致性。为解决这一挑战,研究者开发了Pairwise-preference Search(PairS)算法,一种基于不确定性的搜索方法,通过成对比较及不确定性引导实现高效文本排名,有效减少了偏见、提升了评估效率和可解释性。PairS在多项任务中表现出色,相较于传统评分法有显著提升,为自然语言处理评估提供了新思路。更多详情参阅论文:https://arxiv.org/abs/2403.16950。
77 4
|
19天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
19 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature
【9月更文挑战第24天】近年来,深度学习在人工智能领域取得巨大成功,但在连续学习任务中面临“损失可塑性”问题,尤其在深度强化学习中更为突出。加拿大阿尔伯塔大学的研究人员提出了一种名为“持续反向传播”的算法,通过选择性地重新初始化网络中的低效用单元,保持模型的可塑性。该算法通过评估每个连接和权重的贡献效用来决定是否重新初始化隐藏单元,并引入成熟度阈值保护新单元。实验表明,该算法能显著提升连续学习任务的表现,尤其在深度强化学习领域效果明显。然而,算法也存在计算复杂性和成熟度阈值设置等问题。
62 2
WK
|
2月前
|
机器学习/深度学习 监控 算法
反向传播算法是如何工作的
反向传播算法通过最小化损失函数优化神经网络。首先,输入数据经由前向传播得到预测结果,并计算损失;接着,反向传播计算各参数的梯度,并利用梯度下降法更新权重和偏置。这一过程反复进行,直至满足停止条件。算法具备高效性、灵活性及可扩展性,能处理复杂模式识别与预测任务,适用于不同类型与规模的神经网络,显著提升了模型的预测准确性和泛化能力。
WK
48 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
让非算法同学也能了解 ChatGPT 等相关大模型
让非算法同学也能了解 ChatGPT 等相关大模型
让非算法同学也能了解 ChatGPT 等相关大模型
|
3月前
|
算法 NoSQL 中间件
go语言后端开发学习(六) ——基于雪花算法生成用户ID
本文介绍了分布式ID生成中的Snowflake(雪花)算法。为解决用户ID安全性与唯一性问题,Snowflake算法生成的ID具备全局唯一性、递增性、高可用性和高性能性等特点。64位ID由符号位(固定为0)、41位时间戳、10位标识位(含数据中心与机器ID)及12位序列号组成。面对ID重复风险,可通过预分配、动态或统一分配标识位解决。Go语言实现示例展示了如何使用第三方包`sonyflake`生成ID,确保不同节点产生的ID始终唯一。
go语言后端开发学习(六) ——基于雪花算法生成用户ID
|
3月前
|
数据采集 前端开发 算法
基于朴素贝叶斯算法的新闻类型预测,django框架开发,前端bootstrap,有爬虫有数据库
本文介绍了一个基于Django框架和朴素贝叶斯算法开发的新闻类型预测系统,该系统具备用户登录注册、后台管理、数据展示、新闻分类分布分析、新闻数量排名和新闻标题预测等功能,旨在提高新闻处理效率和个性化推荐服务。
|
4月前
|
人工智能 算法
从RLHF到DPO再到TDPO,大模型对齐算法已经是token-level
【7月更文挑战第1天】在AI领域的语言模型对齐研究中,新提出的TDPO算法实现了Token-level的直接优化。不同于以往在答案级别评估的方法,TDPO利用前向KL散度和Bradley-Terry模型,直接在生成过程的Token层面上调整对齐,提高微调精度和多样性。实验显示,TDPO优于DPO和RLHF,在某些任务上表现出色,但也面临计算资源需求高、处理复杂任务时局限性等问题,需要进一步验证和改进。[论文链接](https://arxiv.org/abs/2404.11999)
122 8
|
5月前
|
算法 数据可视化 网络安全
清华等高校推出首个开源大模型水印工具包MarkLLM,支持近10种最新水印算法
【6月更文挑战第27天】清华大学等高校发布了开源工具MarkLLM,这是首个专注于大语言模型水印的工具包,支持近10种先进算法。该工具统一了水印实现,便于比较和使用,旨在促进水印技术在保障信息真实性和网络安全上的应用。MarkLLM提供直观界面、可视化及自动化评估,推动了大模型水印研究的进步。[论文链接:](https://arxiv.org/abs/2405.10051)**
154 5