Python random模块(获取随机数)常用方法和使用例子

简介: `random`模块在Python中用于生成随机数。

random.random

random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0

random.uniform

random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。

如果a > b,则生成的随机数n: a <= n <= b。如果 a <b, 则 b <= n <= a
代码如下:

print (random.uniform(10, 20))
print (random.uniform(20, 10))
# 18.7356606526
# 12.5798298022

random.randint

random.randint(a, b),用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b

代码如下:

print (random.randint(12, 20))  # 生成的随机数 n: 12 <= n <= 20
print (random.randint(20, 20))  # 结果永远是20     
# print (random.randint(20, 10))  # 该语句是错误的。下限必须小于上限

random.randrange

random.randrange([start], stop[, step]),从指定范围内,按指定基数递增的集合中 获取一个随机数。

如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, ... 96, 98]序列中获取一个随机数。
random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效

random.choice

random.choice从序列中获取一个随机元素。其函数原型为:random.choice(sequence)。参数sequence表示一个有序类型。

这里要说明 一下:

sequence在python不是一种特定的类型,而是泛指一系列的类型。list, tuple, 字符串都属于sequence。有关sequence可以查看python手册数据模型这一章。

下面是使用choice的一些例子:
代码如下:

print (random.choice("学习Python"))
print (random.choice(["JGood", "is", "a", "handsome", "boy"]))
print (random.choice(("Tuple", "List", "Dict")) )

random.shuffle

random.shuffle(x[, random]),用于将一个列表中的元素打乱。如:

代码如下:

p = ["Python", "is", "powerful", "simple", "and so on..."]
random.shuffle(p)
print (p)
# ['powerful', 'simple', 'is', 'Python', 'and so on...']

random.sample

random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列
代码如下:

list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
slice = random.sample(list, 5)  # 从list中随机获取5个元素,作为一个片断返回
print (slice)
print (list)  # 原有序列并没有改变

随机整数:

代码如下:

>>> import random
>>> random.randint(0,99)
# 21

随机选取0到100间的偶数:
代码如下:

>>> import random
>>> random.randrange(0, 101, 2)
# 42

随机浮点数:
代码如下:

>>> import random
>>> random.random()
0.85415370477785668
>>> random.uniform(1, 10)
# 5.4221167969800881

随机字符:

代码如下:

>>> import random
>>> random.choice('abcdefg&#%^*f')
# 'd'

多个字符中选取特定数量的字符:

代码如下:

>>> import random
random.sample('abcdefghij', 3)
# ['a', 'd', 'b']

多个字符中选取特定数量的字符组成新字符串:

代码如下:

>>> import random
>>> import string
>>> string.join( random.sample(['a','b','c','d','e','f','g','h','i','j'], 3) ).replace(" ","")
#学习中遇到问题没人解答?小编创建了一个Python学习交流群:711312441
# 'fih'

随机选取字符串:
代码如下:

>>> import random
>>> random.choice ( ['apple', 'pear', 'peach', 'orange', 'lemon'] )
# 'lemon'

洗牌:

代码如下:

>>> import random
>>> items = [1, 2, 3, 4, 5, 6]
>>> random.shuffle(items)
>>> items
# [3, 2, 5, 6, 4, 1]
相关文章
|
29天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
50 3
|
11天前
|
Python
Python Internet 模块
Python Internet 模块。
105 74
|
29天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
105 63
|
1月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
1月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
17天前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
24天前
|
JSON 安全 API
Python调用API接口的方法
Python调用API接口的方法
112 5
|
算法 安全 量子技术
【Python】蒙特卡洛模拟 | PRNG 伪随机数发生器 | 马特赛特旋转算法 | LCG 线性同余算法 | Python Random 模块
【Python】蒙特卡洛模拟 | PRNG 伪随机数发生器 | 马特赛特旋转算法 | LCG 线性同余算法 | Python Random 模块
373 0
|
4月前
|
机器学习/深度学习 数据采集 安全
Python中的random模块及相关模块详解
随机函数是计算机科学中一个基础而又重要的概念,random模块为我们提供了丰富的功能来处理随机性。 通过深入学习和应用random模块以及numpy、secrets和matplotlib等相关模块,我们可以更好地处理各种随机性相关的问题。 无论是简单的随机数生成,还是复杂的随机分布和安全随机数,Python都为我们提供了强大的工具和库,使我们能够在各种应用场景中灵活应对随机性需求。
|
5月前
|
机器学习/深度学习 数据采集 安全
Python中的random模块及相关模块详解
随机函数是计算机科学中一个基础而又重要的概念,random模块为我们提供了丰富的功能来处理随机性。 通过深入学习和应用random模块以及numpy、secrets和matplotlib等相关模块,我们可以更好地处理各种随机性相关的问题。 无论是简单的随机数生成,还是复杂的随机分布和安全随机数,Python都为我们提供了强大的工具和库,使我们能够在各种应用场景中灵活应对随机性需求。