隐私计算实训营 第1期-第4讲 快速上手隐语SecretFlow的安装和部署

简介: 文档改进建议:明确Ray, K3S, Kuscia与SecretFlow的关系;结构化部署文档,区分顺序步骤与选择分支;提供从零开始的详细部署教程,补充缺失的前置步骤说明。

顺利走通的流程:

SecretFlow的安装(pypi):https://www.secretflow.org.cn/zh-CN/docs/secretflow/v1.4.0b0/getting_started/installation

基于Kuscia部署(中心化组网模式):https://www.secretflow.org.cn/zh-CN/docs/kuscia/v0.6.0b0/getting_started/quickstart_cn


SecretNote的docker-compse安装:https://github.com/secretflow/secretnote

一个简单的PSI流程:https://github.com/secretflow/secretnote/blob/main/docs/guide/data/psi.ipynb



对于文档的一些建议

部署:https://www.secretflow.org.cn/zh-CN/docs/secretflow/v1.4.0b0/getting_started/deployment 部分文档写的不情绪,优化建议如下:

1、描述清楚Ray、K3S、Kuscia和SecretFlow的关系;

我理解如下:

K3S是资源管理,是最底层的组件;

Ray:运营在K3S之上,主要解决AI计算的分布式问题;

SecretFlow:一个Python包,用以降低隐私计算的复杂性;

Kuscia:用于解决SecretFlow在Ray上运行的组网问题;


调用链:K3S->Ray>Kuscia->SecretFlow->SecretNote


2、文档应该结构化,提供了好几种部署方式,不知道哪一步是顺序执行,哪一部分是选择分支。


【基于Kuscia的部署】不确定是【仿真模式】和【生产模式】的并列?还是前置条件?


从内容看,应该是并列关系。


image.png


建议修改为这样,结构化更清晰:

image.png

3、对于部署方式,提供了部署视图,但是缺少从0到1的过程。


比如给出ray命令,明显缺少前置步骤。


相关文章
|
6月前
|
算法 数据挖掘 调度
隐语实训营-第3讲:详解隐私计算框架的架构和技术要点
主要介绍隐语的隐私计算架构,并对每个模块进行拆解、分析,以期望不同使用者找到适合自己的模块,快速入手。
118 4
|
4月前
|
运维 安全 数据安全/隐私保护
隐语(SecretFlow)联邦学习实训营第一期笔记
**摘要:** 本文探讨了数据可信流通的概念,强调了数据来源确认、使用范围界定、流程追溯和风险防范的重要性。数据流通分为内循环(安全域内)和外循环(跨域),其中外循环面临黑客攻击、内部泄露和数据滥用等风险。为建立技术信任,提出了身份验证、利益对齐、能力预期和行为审计四点要求,涉及隐私计算、可信计算等技术。隐语作为隐私计算框架,提供服务以支持数据安全流通,通过开源降低接入门槛,并具备统一架构、原生应用、开放拓展、高性能和多轮安全验证等优势。开源隐语助力解决数据权属和信任问题,促进数据要素的安全流通。
|
6月前
|
安全 算法 数据挖掘
《隐私计算简易速速上手小册》第2章:关键技术介绍(2024 最新版)
《隐私计算简易速速上手小册》第2章:关键技术介绍(2024 最新版)
71 1
《隐私计算简易速速上手小册》第2章:关键技术介绍(2024 最新版)
|
6月前
|
安全 搜索推荐 数据挖掘
《隐私计算简易速速上手小册》第5章:隐私计算在不同行业的应用(2024 最新版)
《隐私计算简易速速上手小册》第5章:隐私计算在不同行业的应用(2024 最新版)
70 1
|
6月前
|
安全 算法 数据挖掘
《隐私计算简易速速上手小册》第4章:技术挑战与解决方案(2024 最新版)
《隐私计算简易速速上手小册》第4章:技术挑战与解决方案(2024 最新版)
99 1
|
6月前
|
分布式计算 数据挖掘 Hadoop
《区块链公链数据分析简易速速上手小册》第5章:高级数据分析技术(2024 最新版)(下)
《区块链公链数据分析简易速速上手小册》第5章:高级数据分析技术(2024 最新版)(下)
72 1
|
6月前
|
消息中间件 数据挖掘 Kafka
《区块链公链数据分析简易速速上手小册》第5章:高级数据分析技术(2024 最新版)(上)
《区块链公链数据分析简易速速上手小册》第5章:高级数据分析技术(2024 最新版)(上)
88 1
|
6月前
|
Python
隐语环境的搭建
https://www.bilibili.com/video/BV12r421t77V/ 忙着改论文,blog没法写的太详细了
|
6月前
|
Linux Docker 容器
隐私计算实训营第4讲-------快速上手隐语SecretFlow的安装和部署
考虑到很多小伙伴可能是初学者之前并没有安装docker 以及docker-compose的经验,本文记录如何在Linux系统上快速的部署docker以及更换国内镜像源。在部署完成以后展示了隐语从源码编译部署以及secretnote的安装,简单快速,非常实用。
228 1
|
6月前
|
算法 数据库
隐私计算实训营第6讲-------隐语PIR介绍及开发实践丨隐私计算实训营 第1期
隐匿查询(PIR)允许用户在不暴露查询内容的情况下检索服务器数据库。PIR分为单服务器和多服务器方案,以及Index PIR和Keyword PIR两类。隐语目前实现了单服务器的SealPIR(用于Index PIR)和Labeled PSI(用于Keyword PIR)。SealPIR优化点包括:数据打包、查询向量压缩、支持多维和多个查询。未来,隐语PIR的计划包括性能提升、多服务器方案和新算法的探索。
339 3