python数据分析和可视化【3】体检数据分析和小费数据分析

简介: python数据分析和可视化【3】体检数据分析和小费数据分析

体检数据分析

要求:

(1)读取testdata文件,利用agg函数统计数据中‘淋巴细胞计数’的和与均值、‘白细胞计数’的和与均值。

(2)统计不同性别人群的血小板计数

(3)同时输出淋巴细胞计数的均值、血小板计数的均值与标准差

数据集

代码:

import pandas as pd
# 读取Excel文件
df = pd.read_excel('C:\\Users\86178\Downloads\\testdata.xls')
# 统计‘淋巴细胞计数’的和与均值
lymphocyte_agg = df['淋巴细胞计数'].agg(['sum', 'mean'])
# 统计‘白细胞计数’的和与均值
leukocyte_agg = df['白细胞计数'].agg(['sum', 'mean'])
# 统计不同性别人群的血小板计数
platelet_by_gender = df.groupby('性别')['血小板计数'].sum()
# 输出淋巴细胞计数的均值、血小板计数的均值与标准差
lymphocyte_mean = df['淋巴细胞计数'].mean()
platelet_mean = df['血小板计数'].mean()
platelet_std = df['血小板计数'].std()
print("淋巴细胞计数的和与均值:")
print(lymphocyte_agg)
print("白细胞计数的和与均值:")
print(leukocyte_agg)
print("不同性别人群的血小板计数:")
print(platelet_by_gender)
print("淋巴细胞计数的均值:", lymphocyte_mean)
print("血小板计数的均值:", platelet_mean)
print("血小板计数的标准差:", platelet_std)

运行结果:

小费数据分析

要求:

(1)读取数据,并查看数据的描述信息。

(2)将列名修改为汉字,并显示前5行数据。

(3)分析男性顾客与女性顾客谁更慷慨。(将数据按照性别进行分组,查看分组后小费的情况)

(4)分析日期与小费之间的关系。(将数据按照星期分类,查看分类后的小费情况)

性别+抽烟的组合因素对慷慨度的影响。(将数据按照性别和是否抽烟进行分组,查看分组后小费的情况)

数据集:

代码:

import pandas as pd
# 1. 读取xls数据并查看描述信息
data = pd.read_excel('C:\\Users\86178\Downloads\\tips.xls')
print(data.describe())
# 2. 将列名修改为汉字并显示前5行数据
data.columns = ['总消费', '小费', '性别', '是否吸烟', '日期', '用餐时间', '大小']
print(data.head())
# 3. 分析男性顾客与女性顾客谁更慷慨
generosity_by_gender = data.groupby('性别')['小费'].mean()
print(generosity_by_gender)
# 4. 分析日期与小费之间的关系
tip_by_day = data.groupby('日期')['小费'].mean()
print(tip_by_day)
# 5. 性别+抽烟的组合因素对慷慨度的影响
generosity_by_gender_smoker = data.groupby(['性别', '是否吸烟'])['小费'].mean()
print(generosity_by_gender_smoker)

运行结果:

目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
37 1
|
16天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
45 0
|
10天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
26 2
|
17天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
22天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
24 2
|
8天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
8天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
10天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
10天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
22天前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。