python数据分析和可视化【3】体检数据分析和小费数据分析

简介: python数据分析和可视化【3】体检数据分析和小费数据分析

体检数据分析

要求:

(1)读取testdata文件,利用agg函数统计数据中‘淋巴细胞计数’的和与均值、‘白细胞计数’的和与均值。

(2)统计不同性别人群的血小板计数

(3)同时输出淋巴细胞计数的均值、血小板计数的均值与标准差

数据集

代码:

import pandas as pd
# 读取Excel文件
df = pd.read_excel('C:\\Users\86178\Downloads\\testdata.xls')
# 统计‘淋巴细胞计数’的和与均值
lymphocyte_agg = df['淋巴细胞计数'].agg(['sum', 'mean'])
# 统计‘白细胞计数’的和与均值
leukocyte_agg = df['白细胞计数'].agg(['sum', 'mean'])
# 统计不同性别人群的血小板计数
platelet_by_gender = df.groupby('性别')['血小板计数'].sum()
# 输出淋巴细胞计数的均值、血小板计数的均值与标准差
lymphocyte_mean = df['淋巴细胞计数'].mean()
platelet_mean = df['血小板计数'].mean()
platelet_std = df['血小板计数'].std()
print("淋巴细胞计数的和与均值:")
print(lymphocyte_agg)
print("白细胞计数的和与均值:")
print(leukocyte_agg)
print("不同性别人群的血小板计数:")
print(platelet_by_gender)
print("淋巴细胞计数的均值:", lymphocyte_mean)
print("血小板计数的均值:", platelet_mean)
print("血小板计数的标准差:", platelet_std)

运行结果:

小费数据分析

要求:

(1)读取数据,并查看数据的描述信息。

(2)将列名修改为汉字,并显示前5行数据。

(3)分析男性顾客与女性顾客谁更慷慨。(将数据按照性别进行分组,查看分组后小费的情况)

(4)分析日期与小费之间的关系。(将数据按照星期分类,查看分类后的小费情况)

性别+抽烟的组合因素对慷慨度的影响。(将数据按照性别和是否抽烟进行分组,查看分组后小费的情况)

数据集:

代码:

import pandas as pd
# 1. 读取xls数据并查看描述信息
data = pd.read_excel('C:\\Users\86178\Downloads\\tips.xls')
print(data.describe())
# 2. 将列名修改为汉字并显示前5行数据
data.columns = ['总消费', '小费', '性别', '是否吸烟', '日期', '用餐时间', '大小']
print(data.head())
# 3. 分析男性顾客与女性顾客谁更慷慨
generosity_by_gender = data.groupby('性别')['小费'].mean()
print(generosity_by_gender)
# 4. 分析日期与小费之间的关系
tip_by_day = data.groupby('日期')['小费'].mean()
print(tip_by_day)
# 5. 性别+抽烟的组合因素对慷慨度的影响
generosity_by_gender_smoker = data.groupby(['性别', '是否吸烟'])['小费'].mean()
print(generosity_by_gender_smoker)

运行结果:

目录
相关文章
|
4月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
265 3
|
4月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
3月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
4月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
4月前
|
机器学习/深度学习 搜索推荐 数据可视化
基于python大数据的音乐可视化与推荐系统
本研究基于Python实现音乐数据采集、清洗、分析与可视化,并结合协同过滤算法构建个性化推荐系统。通过Echarts展示音乐热度及用户偏好,提升用户体验,助力音乐产业智能化发展。
|
5月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
4月前
|
搜索推荐 算法 大数据
基于python大数据的旅游景点可视化与推荐系统
本系统基于大数据与网络技术,构建个性化旅游推荐平台。通过收集用户偏好及行为数据,结合机器学习算法,提供精准的旅游目的地、住宿及交通推荐,旨在优化旅游信息传递,提升用户决策效率与旅行体验。
|
5月前
|
数据采集 数据可视化 API
驱动业务决策:基于Python的App用户行为分析与可视化方案
驱动业务决策:基于Python的App用户行为分析与可视化方案

推荐镜像

更多