Knative 架构解析

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 【2月更文挑战第29天】Knative作为构建无服务器产品的基础设施,建立在Kubernetes和Istio之上,提供从源代码到服务的编排、流量管理、自动扩缩容和事件绑定等功能,分为Build、Eventing和Serving三个模块,旨在确保编程模型的可移植性。

CNCF针对无服务器计算的定义为:无服务器计算是指一种构建和运行不需要服务器管理的应用程序的理念。它描述了一个更细粒度的部署模型,即将以一个或多个功能方式提供的应用程序上载到平台,然后执行、扩缩容及计费,以响应当前所需的确切要求。

一个理想的无服务器平台至少需要以下几个方面:

  • 构建和运行应用程序,需要一个用来构建和运行应用程序的平台。是的,Kubernetes就是当前最为合适的新应用程序服务器。
  • 没有服务器管理,不需要专用的应用程序服务器管理。在Kubernetes之上,所有应用程序都通过Kubernetes Deployment和Service进行容器化和部署。
  • 根据确切的需求执行、扩缩容及计费,根据业务的需求配置以及扩容缩容的比率,Kubernetes提供了自动扩容与缩容能力,并可以根据使用量计费。


毫无疑问,Kubernetes目前无法为无服务器平台提供所有的功能。在Kubernetes基础之上,无服务器技术栈需要以下原语能力的补充:

  • Build:需要一种“源代码到容器”的机制,来简化部署。
  • Routing:灵活简便的路由能力;支持各种灰度发布的能力。
  • Event Building:可插拔的事件源接入能力。
  • Auto Scaling:灵活的自动扩缩容能力,支持自动收缩,从0个到1个实例,从1个到N个实例,再回到0个实例。
  • Observability:提供可观察性能力,具备完善的跟踪、监控和日志记录能力。
  • Invocation:可插拔的调用器,让开发人员可以使用简单、符合已有语言习惯的交付代码逻辑。再往上,就是无服务器不同产品的能力,它可以复用Kubernetes的基础能力和上述无服务器原语能力,而不需要去重复发明轮子,同时也保证了可移植性。


Knative是构建多种无服务器产品的基础设施,并且会确保它们之间编程模型的可移植性。Knative是建立在Kubernetes和Istio平台之上的,使用Kubernetes提供的容器管理能力(Deployment、Service和pod等),以及Istio提供的网络管理功能(VirtualService、DestinationRule和IngressGateway等)。


Knative项目下的每个组件都尝试使用一些常见的模式,并提供一套业界验证过的基于Kubernetes的最佳实践。Knative组件专注于解决许多烦琐但有挑战的一些任务,例如:如何快速部署弹性容器,以及如下操作:

  • 在Kubernetes上如何实现从源代码到服务URL的编排流程。
  • 使用蓝/绿部署实现流量的路由和管理。
  • 根据需求自动扩缩容以及调整工作负载大小。
  • 将运行服务绑定到事件生态系统中。


Knative的开发人员可以使用熟悉的习语、语言和框架来部署任何工作负载,例如函数功能(Function)、应用程序(Application)或容器(Container)。Knative负责构建、部署和运行无服务器化的工作负载,包含三个模块:Build、Eventing、Serving。

这三个模块的功能和分工具体描述如下:

  • Build模块负责将源代码构建成容器,它基于Google的容器构建服务,提供了一个可插拔的构建模型,可扩展实现多种构建方法,Buildpacks就是Pivotal提供的一种构建容器模式。
  • Eventing模块实现函数发布和订阅事件流的能力,函数遵循CloudEvents规范来发送和接收事件,它也提供了可插拔的事件源和消息代理模型,轻松支持多种消息代理服务,如Kafka、Google Pub/Sub、RabbitMQ等。
  • Serving模块负责部署和运行无服务器化的函数负载,它支持的特性包括:函数的运行可由HTTP或Message请求驱动、弹性伸缩可至零,并可利用Istio实现集群内的路由分发以及进入集群的入口连接。


未来,通过Knative可以完成跨云单一平台的理想,任何支持Kubernetes地方,企业都可以在其间自由移动工作负载,选择在最适合的地方执行任务,这为企业提供了极大的控制灵活性,可以依照需求调整系统部署。

相关文章
|
7天前
|
编解码 应用服务中间件 数据库
阿里云服务器Arm架构怎么样?架构亮点、适用场景、价格解析
Arm计算架构以其低功耗、高效率的特点受到广泛关注。阿里云提供的Arm计算实例通常采用Ampere Altra或阿里云自研倚天710 ARM架构CPU,基于第四代神龙架构提供稳定可预期的超高性能。本文将深入剖析阿里云Arm计算架构云服务器的技术亮点、适用场景、包年包月与按量付费的详细价格信息,以及当前的活动优惠,以供用户选型参考。
阿里云服务器Arm架构怎么样?架构亮点、适用场景、价格解析
|
1月前
|
运维 负载均衡 微服务
|
1月前
|
数据采集 机器学习/深度学习 人工智能
YOLOv11浅浅解析:架构创新
YOLOv11是YOLO系列最新升级版,通过C3k2模块、SPPF优化和解耦检测头等创新,显著提升检测精度与速度,mAP提高2-5%,推理更快,支持多平台部署,适用于工业、安防、自动驾驶等场景。
|
2月前
|
人工智能 JavaScript 前端开发
LangGraph架构解析
本文深入解析了传统Agent开发的三大痛点:状态管理碎片化、流程控制复杂及扩展性差,提出使用LangGraph通过有向图模型重构工作流,将LLM调用与工具执行抽象为节点,实现动态流程跳转。文中详述LangGraph四大核心组件——状态机引擎、节点设计、条件边与工具层集成,并结合生产环境最佳实践,如可视化调试、状态持久化与人工干预机制,最终对比LangGraph与传统方案的性能差异,给出选型建议。
333 0
|
6天前
|
机器学习/深度学习 人工智能 搜索推荐
万字长文深度解析最新Deep Research技术:前沿架构、核心技术与未来展望
近期发生了什么自 2025 年 2 月 OpenAI 正式发布Deep Research以来,深度研究/深度搜索(Deep Research / Deep Search)正在成为信息检索与知识工作的全新范式:系统以多步推理驱动大规模联网检索、跨源证据。
281 30
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
34_GPT系列:从1到5的架构升级_深度解析
大型语言模型(LLM)的发展历程中,OpenAI的GPT系列无疑扮演着至关重要的角色。自2018年GPT-1问世以来,每一代GPT模型都在架构设计、预训练策略和性能表现上实现了质的飞跃。本专题将深入剖析GPT系列从1.17亿参数到能够处理百万级token上下文的技术演进,特别关注2025年8月8日发布的GPT-5如何引领大模型技术迈向通用人工智能(AGI)的重要一步。
|
28天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
347 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
9天前
|
设计模式 前端开发 Java
《深入理解Spring》:Spring MVC架构深度解析与实践
Spring MVC是基于Spring框架的Web开发核心模块,实现Model-View-Controller设计模式。它通过DispatcherServlet统一调度请求,结合注解驱动的控制器、灵活的数据绑定与验证、丰富的视图支持及拦截器、异常处理等机制,提升开发效率与系统可维护性,助力构建高性能、易测试的现代Web应用。
|
23天前
|
存储 监控 安全
132_API部署:FastAPI与现代安全架构深度解析与LLM服务化最佳实践
在大语言模型(LLM)部署的最后一公里,API接口的设计与安全性直接决定了模型服务的可用性、稳定性与用户信任度。随着2025年LLM应用的爆炸式增长,如何构建高性能、高安全性的REST API成为开发者面临的核心挑战。FastAPI作为Python生态中最受青睐的Web框架之一,凭借其卓越的性能、强大的类型安全支持和完善的文档生成能力,已成为LLM服务化部署的首选方案。

推荐镜像

更多
  • DNS