基于深度学习的人员指纹身份识别算法matlab仿真

简介: 这是一个关于使用深度学习进行指纹识别的算法概述。在matlab2022a环境下,通过预处理指纹图像(灰度化、二值化等)并利用卷积神经网络(CNN)提取特征。CNN架构包含卷积、池化、归一化和全连接层。特征向量通过余弦相似度计算匹配,训练时采用triplet loss优化。部分核心代码展示了加载预训练模型进行测试集分类预测并计算准确率的过程。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
指纹识别技术是一种生物特征识别技术,它通过分析人类手指末端皮肤表面的纹路特征来进行身份认证。深度学习是机器学习的一个分支,特别适用于处理大规模高维数据,并在图像识别、语音识别等领域取得了显著成果。

3.1 指纹图像预处理与特征提取
首先,指纹图像需要经过一系列预处理步骤,包括灰度化、二值化、细化、去噪声等,以得到清晰的指纹脊线图。然后,传统方法中通常使用 minutiae 特征(如端点、分叉点)作为关键特征进行提取。而在深度学习框架下,神经网络能够直接从原始或预处理后的指纹图像中自动生成高级抽象特征:

image.png

3.2 卷积神经网络架构
一个典型的用于指纹识别的深度学习模型可能包含多个卷积层(Convolutional Layer)、池化层(Pooling Layer)、归一化层(Normalization Layer)以及全连接层(Fully Connected Layer)。卷积层通过对图像进行滤波操作来提取局部特征:

image.png

3.3 特征编码与匹配
深度学习指纹识别的核心在于利用网络自动学习到的特征进行身份比对。网络的最后几层通常会形成一个紧凑且可比对的特征向量。对于两个指纹图像,其对应的特征向量可以计算相似度得分,如余弦相似度:

image.png

3.4 损失函数与训练
为了训练这样的网络,通常会选择一种适合监督学习任务的损失函数,例如 triplet loss 或者交叉熵损失。对于一对正样本(同一人的不同指纹)和负样本(不同人的指纹),triplet loss 可以表述为:

image.png

    通过梯度下降或其他优化算法调整网络参数θ ,使得相同个体的指纹特征尽可能接近,而不同个体的指纹特征尽可能远离。

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
load gnet.mat% 载入预训练的GoogLeNet模型

for ij = 1:15
Dataset=[];
% 创建图像数据存储对象,包括图像文件夹,标签等信息
Dataset         = imageDatastore(['dataset\man',num2str(ij),'\'], 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
Dataset.ReadFcn = @(loc)imresize(imread(loc),[224,224]);% 设置 im 的读取函数,将读取的图像进行缩放,大小为 [224,224]

% 对测试集进行分类预测
[Predicted_Label, Probability] = classify(net, Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Dataset.Labels);
accuracy
figure

for i = 1:8
    subplot(2,4,i)
    I = readimage(Dataset, i);% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(i);

    title(['人员信息:',label]);
end


end
相关文章
|
11天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
8天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
14天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
11天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第18天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术优势和面临的主要挑战。通过具体案例和数据支持,展示了深度学习如何革新图像识别技术,并指出了未来发展的方向。
117 58
|
3天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
34 8
|
2天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
本文探讨了深度学习在图像识别领域的应用现状,分析了其面临的主要技术挑战和解决方案。通过对比传统方法和深度学习模型的优势,揭示了深度学习如何推动图像识别技术的发展,并展望了未来的研究方向。
|
6天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第22天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术原理、优势以及面临的挑战。通过实例展示了深度学习如何推动图像识别技术的发展,并对未来趋势进行了展望。
20 5
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第20天】 随着人工智能技术的不断发展,深度学习已经在许多领域展现出强大的应用潜力。本文将探讨深度学习在图像识别领域的应用,以及面临的挑战和可能的解决方案。通过分析现有的研究成果和技术趋势,我们可以更好地理解深度学习在图像识别中的潜力和局限性,为未来的研究和应用提供参考。
33 7

热门文章

最新文章