如何在Python中使用Pandas库进行数据清洗?

简介: Pandas在Python中提供高效的数据清洗功能,包括处理缺失值(`dropna()`删除、`fillna()`填充)、重复值(`duplicated()`检查、`drop_duplicates()`删除)、异常值(条件筛选、分位数、标准差)和文本数据(字符串操作、正则表达式)。这些方法帮助用户根据需求清洗数据,确保数据质量。

在Python中,Pandas库提供了强大的数据清洗功能。以下是使用Pandas库进行数据清洗的一些常用方法:

  1. 处理缺失值:可以使用dropna()函数删除包含缺失值的行或列,或者使用fillna()函数填充缺失值。例如:
    ```python
    import pandas as pd

删除包含缺失值的行

df_dropped_rows = df.dropna()

删除包含缺失值的列

df_dropped_columns = df.dropna(axis=1)

使用常数填充缺失值

df_filled_constant = df.fillna(0)

使用前一个值填充缺失值

df_filled_forward = df.fillna(method='ffill')

使用后一个值填充缺失值

df_filled_backward = df.fillna(method='bfill')


2. 处理重复值:可以使用`duplicated()`函数检查重复值,并使用`drop_duplicates()`函数删除重复值。例如:
```python
# 检查重复值
duplicates = df.duplicated()

# 删除重复值
df_dropped_duplicates = df.drop_duplicates()
  1. 处理异常值:可以使用条件筛选、分位数或标准差等方法来识别和处理异常值。例如:
    ```python

    使用条件筛选删除异常值

    df_filtered = df[(df['column'] > lower_bound) & (df['column'] < upper_bound)]

使用分位数删除异常值

lower_quantile = df['column'].quantile(0.25)
upper_quantile = df['column'].quantile(0.75)
interquartile_range = upper_quantile - lower_quantile
lower_bound = lower_quantile - 1.5 interquartile_range
upper_bound = upper_quantile + 1.5
interquartile_range
df_filtered = df[(df['column'] > lower_bound) & (df['column'] < upper_bound)]

使用标准差删除异常值

mean = df['column'].mean()
std = df['column'].std()
lower_bound = mean - 3 std
upper_bound = mean + 3
std
df_filtered = df[(df['column'] > lower_bound) & (df['column'] < upper_bound)]


4. 处理文本数据:可以使用字符串操作、正则表达式等方法来处理文本数据。例如:
```python
# 去除空格
df['column'] = df['column'].str.strip()

# 替换文本
df['column'] = df['column'].replace({'old': 'new'})

# 提取文本中的特定部分
df['column'] = df['column'].str.extract('(\d+)')

这些是使用Pandas库进行数据清洗的一些常用方法。你可以根据具体的需求选择合适的方法来进行数据清洗。

目录
相关文章
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
4天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
29 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
28天前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
106 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
1月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
73 20
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
47 2
|
2月前
|
数据采集 分布式计算 大数据
Pandas数据清洗:缺失值处理
本文详细介绍了Pandas库中处理缺失值的方法,包括检测缺失值、删除缺失值、填充缺失值和插值法填充缺失值。通过基础概念和代码示例,帮助读者理解和解决数据清洗中常见的缺失值问题。
167 80
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
185 77
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
71 11
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
88 4

推荐镜像

更多