Linux进程间通信(IPC)介绍:详细解析IPC的执行流程、状态和通信机制

简介: Linux进程间通信(IPC)介绍:详细解析IPC的执行流程、状态和通信机制

Posix IPC概述

POSIX.1b 实时扩展定义了一组 IPC 机制(POSIX.1b 的开发者的其中一个目标是设计出一组能弥补 System V IPC 工具的不足之处的 IPC 机制)。这些IPC机制被称为POSIX IPC。


POSIX IPC包含以下三种类型


这三种POSIX IPC机制具体如下:
1.消息队列可以用来在进程间传递消息。与System V消息队列一样,消息边界被保留了下来,这样读者和写着就以消息为单位进行通信了。POSIX消息队列允许给每个消息赋一个优先级,这样在队列中优先级较高的消息就会排在优先级较低的消息前面
2.信号量允许多个进程同步各自的动作。 System V 信号量一样,POSIX 信号量也是一个由内核维护的整数,其值永远都不会小于 0。与 System V 信号量相比,POSIX信号量在用法上要简单一些:它们是逐个分配的(与 System V 信号量集相比),并且在单个信号量上只能使用两个操作来将信号量的值加 1 或减 1(与 semop()系统调用能原子地在一个 System V 信号量集中的多个信号量上加上或减去一个任意值相比)
3.共享内存使得多个进程能够共享同一块内存区域,与System V共享内存一样,POSIX共享内存提供了一种快速IPC,一旦进程更新了共享内存之后,所发生的变更立即对共享同一区域的其他进程可见。



IPC 对象名字

  • 必须以/打头,并且后续不能有其它/,形如/somename
  • 长度不能超过NAME_MAX

三种类型的posix IPC都必须使用POSIX IPC的名字进行标识。mq_open、sem_open和shm_open这三个函数的第一个参数就是这样的一个名字,它可能是某个文件系统中的一个真正的路径名,也可能不是.

posix.1就是这么描述posix ipc名字的:

  • 它必须复合已有路径名规则(必须最多由PATH_MAX个字节构成,包括尾部的空字节).如果它以斜杠符号开头,那么对这些函数的不通调用将访问同一个队列.
  • 如果它以斜杠符号开头,那么对这些函数的不同调用将访问同一个队列。如果它不以斜杠符号开头,那么效果取决于实现.
  • 名字中额外以斜杠符号的解释由现实定义.

SusV3规定的唯一一种用来标识POSIX IPC对象的可移植方式是使用以斜线打头后面跟着一个或者多个非斜线字符的名字,比如/myproject。Linux 和其他一些实现(如 Solaris)允许采用这种可移植的命名方式来给 IPC 对象命名.
SUSv3 并没有禁止使用形式不为/myobject 的名字,但表示这种名字的语义是由实现定义的。在一些系统上,创建 IPC 对象名字的规则是不同的。可移植的应用程序中应该将IPC对象名的生成工作放在一个根据目标裁剪过的单独的函数会在头文件中



在Linux上,POSIX共享内存和消息队列的名字的最大长度为NAME_MAX(255)个字符,而信号量的名字的最大长度要少 4 个字符,这是因为实现会在信号量名字前面加上字符串sem.



为了避免移植性问题,我们应该把posix ipc的名字的#define 放在一个便于修改的头文件之中,这样在移植操作系统的时候就需要修改这个头文件.

posix.1定义了下面三个宏

S_TYPEISMQ(buf)

S_TYPEISSEM(buf)

S_TYPEISSHM(buf)

他们单个参数是指向某个stat结构的指针,其内容由fstat、lstat或stat这三个函数填入。
如果制定的ipc对象(消息队列,信号量或者是共享内存)是作为一个独特的文件类型实现的,而且参数指向的stat结构访问这样的文件类型,那么这三个宏计算出一个非0值,否则计算出的值为0.


自定义 px_ipc_name函数

解决上述移植性问题的另一种办法是自定义一个px_ipc_name的函数,它为定位posix ipc名字而添加上正确的前缀目录.

设计示例:

#include "unpipc.h"
//若成功则返回非空指针,若出错则返回NULL.
//name参数中不能有任何斜杠符.
char *px_ipc_name(const char *name)
{
    char *dir,*dst,*slash;
 
    if((dst = malloc(PATH_MAX)) == NULL)
    {
     return  NULL;
    }
 
    if((dir = getenv("PX_IPC_NAME")) == NULL) {
#ifdef  POSIX_IPC_PREFIX
    dir = POSIX_IPC_PREFIX;
#else
    dir = "/tmp/";
#endif
    }  
    slash = (dir[strlen(dir)-1] == '/') ? "" : "/";   
    snprintf(dst,PATH_MAX,"%s%s%s",dir,slash,name);
    return(dst);
}

创建与打开IPC通道

mq_open、sem_open和shm_open这三个创建或打开一个ipc对象的函数,他们的名字为oflag的第二个参数制定怎么样打开所请求的对象。这与标准open函数的第二个参数类似.图2-3给出了可组合构成这个参数的各种常值.
前三行制定怎么样打开对象:只读、只写或读写.消息队列能以其中任何一种模式打开,信号量的打开不指定任何模式(任意信号量的操作,都需要读写访问权限),共享内存对象则不能用只写模式打开.

参数介绍

  • O_CREAT:
    O_CREAT若不存在则创建由函数第一个参数制定名字的消息队列,信号量或者共享内存区的对象,则创建一个新的消息队列、信号量或者共享内存的时候,至少需要另外一个称为mode的参数.这个参数指定权限位.

这些常值定义在<sys/stat.h>中,这个参数使用umask函数或者shell的umask命令来设置.

跟创建新的文件一样,当创建一个新的消息队列、信号量或者共享内存区对象时候,其用户id被设置为当前进程的有效用户id。信号量或共享内存区对象的组id被设置为当前进程的有效组id或者某个系统默认的id。新的消息队列对象的组id被设置为当前进程的有效组id.

  • O_EXCL:

    如果这个标志和O_CREAT一起指定,那么ipc函数只在指定名字的消息队列,信号量或者共享内存对象不存在的时候才会创建新的对象。如果这个对象已经存在,而且指定了O_CREAT|o_EXCL,那么他会返回一个EEXIST的错误
    主要问题是考虑到其他进程的存在,检查锁指定名字的消息队列、信号量或共享内存区对象的存在和创建它这两个操作必须是原子的。
  • O_NONBLOCK:
    这个标志使得一个消息队列在队列为空或队列填满的时候不再会被阻塞,我们会在mq_receive和mq_send里详细讨论这个标志
  • O_TRUNC:
    如果用只读模式打开一个已经存在的共享内存对象,那么这个标志将会使对象的长度被截断为0.

图2-5,2-6 展示了打开一个ipc的真正的逻辑流程


IPC权限

新的消息队列、有名信号量或共享内存对象是由其oflag参数中含有O_CREAT标志的mq_open、sem_open、或者shm_open函数创建的。如图2-4所注,权限位与这些IPC类型的每个对象关联,与每个unix文件相互关联。
同样又这三个函数打开一个已经存在的消息队列、信号量或共享内存对象的时候定O_CREAT或制定O_CREAT但是没有制定O_EXCL同事对象已经存在,将基于下面的消息执行权限测试:
1)创建时候赋予这个ipc对象的权限位;
2)锁请求的访问类型(O_RDONLY、O_WRONLY或这O_RDWR);
3)调用进程的有效用户ID、有效组ID以及各个辅助组ID(若支持的话).
大多数unix内核按照如下步骤进行权限测试.
1)如果当前进程的有效用户ID为0(超级用户),那就允许访问.
2)在当前进程的有效用户ID等于这个ipc对象的属主的前提下,如果相应用户的权限位已经设置,那么就允许访问,否则会拒绝访问.
比如用户以读权限访问ipc的时候,那么这个用户的读权限位必须要设置
3)在当前进程的有效组ID或它的某个辅助组id等于这个ipc对象的组的id前提下,如果响应的组访问权限已经设置,那么就允许访问,否则拒绝.
4)如果相应的其他用户访问权限位已经设置,那么允许访问,否则禁止访问
这4个步骤按照所列的步骤尝试.如果当前的进程应有ipc对象的时候,那么访问权限的授予或者拒绝只依赖与用户访问权限----组访问权限不会考虑.类似的当前进程不应有这个ipc对象,但是它属于某个组,那么访问允许或者拒绝只依赖组,其他用户访问权限绝不会考虑。


POSIX与system V IPC的区别

  • POSIX IPC
    POSIX接口更简单:使用类似于文件I/O的open、close、unlink等接口
    POSIX使用名字代替键来标识IPC对象
    对IPC对象引用计数,简化了对IPC对象的删除
    跟文件类似,删除操作也仅仅是删除了IPC对象的名字
    只有当IPC对象的引用计数变成0之后才能真正销毁
  • System V IPC
    System V IPC 可移植性好:几乎所有的UNIX系统都支持System V,POSIX在UNIX系统中只是一个可选组件,有些UNIX系统并不支持
    Linux系统一般会支持system V
    Linux2.6开始陆续支持POSIX…

  • 效率
    在信号量这种常用的同步互斥手段方面,POSIX在无竞争条件下是不会陷入内核的,而SYSTEM V则是无论何时都要陷入内核,因此性能稍差。
  • 冗余
    POSIX的sem_wait函数成功获取信号量后,进程如果意外终止,将无法释放信号量,而System V则提供了SEM_UNDO选项来解决这个问题。因此,相比而言,SystemV更加可靠。
  • 应用
    可能有小部分操作系统没有实现POSIX标准,System V更加广泛些,但是考虑到可移植性POSIX必然是一个趋势。在IPC,进程间的消息传递和同步上,似乎POSIX用得较普遍,而在共享内存方面,POSIX实现尚未完善,system V仍为主流。
  • 多线程与多进程
    在观察使用进程间通信手段后,会发现在多线程中使用的基本是POSIX标准提供的接口函数,而多进程则是基于System V

POSIX编程注意事项

使用POSIX消息队列和共享内存时,需要实时库librt链接,编译时需指定-lrt
使用POSIX信号量时,需要和线程库libthread链接起来,编译时需指定-lpthread

总结

三种posix ipc------消息队列,共享内存和信号量都是用标识符来标示的.但是这些路径名既可以是文件系统中实际的路径名字,也可以不是,这一点会导致移植性问题.
当我们用open打开ipc对象的时候,我们必须给open的对象访问权限,当打开一个已经存在的ipc对象的时候,锁执行的权限测试与打开一个已经存在的文件时候一样.


目录
相关文章
|
5月前
|
Web App开发 Linux 程序员
获取和理解Linux进程以及其PID的基础知识。
总的来说,理解Linux进程及其PID需要我们明白,进程就如同汽车,负责执行任务,而PID则是独特的车牌号,为我们提供了管理的便利。知道这个,我们就可以更好地理解和操作Linux系统,甚至通过对进程的有效管理,让系统运行得更加顺畅。
138 16
|
5月前
|
Ubuntu Linux
"unzip"命令解析:Linux下如何处理压缩文件。
总的来说,`unzip`命令是Linux系统下一款实用而方便的ZIP格式文件处理工具。本文通过简明扼要的方式,详细介绍了在各类Linux发行版上安装 `unzip`的方法,以及如何使用 `unzip`命令进行解压、查看和测试ZIP文件。希望本文章能为用户带来实际帮助,提高日常操作的效率。
621 12
|
5月前
|
Unix Linux
对于Linux的进程概念以及进程状态的理解和解析
现在,我们已经了解了Linux进程的基础知识和进程状态的理解了。这就像我们理解了城市中行人的行走和行为模式!希望这个形象的例子能帮助我们更好地理解这个重要的概念,并在实际应用中发挥作用。
108 20
|
4月前
|
监控 Shell Linux
Linux进程控制(详细讲解)
进程等待是系统通过调用特定的接口(如waitwaitpid)来实现的。来进行对子进程状态检测与回收的功能。
86 0
|
4月前
|
存储 负载均衡 算法
Linux2.6内核进程调度队列
本篇文章是Linux进程系列中的最后一篇文章,本来是想放在上一篇文章的结尾的,但是想了想还是单独写一篇文章吧,虽然说这部分内容是比较难的,所有一般来说是简单的提及带过的,但是为了让大家对进程有更深的理解与认识,还是看了一些别人的文章,然后学习了学习,然后对此做了总结,尽可能详细的介绍明白。最后推荐一篇文章Linux的进程优先级 NI 和 PR - 简书。
118 0
|
4月前
|
存储 Linux Shell
Linux进程概念-详细版(二)
在Linux进程概念-详细版(一)中我们解释了什么是进程,以及进程的各种状态,已经对进程有了一定的认识,那么这篇文章将会继续补全上篇文章剩余没有说到的,进程优先级,环境变量,程序地址空间,进程地址空间,以及调度队列。
84 0
|
4月前
|
Linux 调度 C语言
Linux进程概念-详细版(一)
子进程与父进程代码共享,其子进程直接用父进程的代码,其自己本身无代码,所以子进程无法改动代码,平时所说的修改是修改的数据。为什么要创建子进程:为了让其父子进程执行不同的代码块。子进程的数据相对于父进程是会进行写时拷贝(COW)。
82 0
|
7月前
|
Linux 数据库 Perl
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。
|
7月前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
352 5
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能