Flink CDC产品常见问题之读取不到或读取不全消息如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:Flink CDC里谁能发下3.0的包吗?公司上不了github怎么办?


Flink CDC里谁能发下3.0的包吗?公司上不了github怎么办?


参考回答:

参考这个文档看一下:

https://github.com/ververica/flink-cdc-connectors/releases/download/release-3.0.0/flink-cdc-3.0.0-bin.tar.gz


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592274


问题二:Flink CDC里这个报错有人知道啥原因吗?


Flink CDC里这个报错有人知道啥原因吗?


参考回答:

放错目录了


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592275


问题三:Flink CDC里读取不到或读取不全消息 请问可能是什么原因?


Flink CDC里flink sql将消息写入upsert-kafka后,再通过upsert-kafka connector读取不到或读取不全消息 请问可能是什么原因?


参考回答:

可能情况:

1.从源头排查,打印数据看是否采集到了;

2.Flink内部过滤逻辑看看,有没有异常操作

3.kafka默认单条存储的限制是1M,可能数据大小引起的,调BATCH_SIZE_CONFIG这个配置。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592277


问题四:能否提供一个使用Flink CDC DataStream API结合进行并行读取的示例?


能否提供一个使用Flink CDC DataStream API结合MySqlParallelSource进行并行读取MySQL数据的示例?若要实现增量快照的并行读取和无锁特性,是否必须选择MySqlParallelSource而非MySqlSource?


参考回答:

Apache Flink CDC 提供了针对 MySQL 数据库的并行读取能力,通常通过 Flink CDC for MySQL 组件实现。在早期的版本中,MySqlSource 可能不支持并行读取,但是在后续的发展中,尤其是使用了 Debezium 的 connector 实现后,提供了并行读取 MySQL binlog 的能力。

在 Flink 1.12 版本之后,通过 Flink CDC for MySQL connector,你确实可以使用并行读取的方式来消费 MySQL 数据库的变更数据。不过,具体实现上不再直接使用 MySqlSource,而是使用 Debezium MySQL connector,它是专门为 Flink CDC 设计的,可以充分利用 Flink 的并行处理优势。

下面是一个使用 DataStream API 调用 MySQL CDC connector 的基本示例(伪代码):

import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.connector.debezium.config.JsonDebeziumDeserializationSchema;
import org.apache.flink.connector.debezium.table.DebeziumTableSource;
import io.debezium.config.Configuration;
// ...
final Configuration config = Configuration.create()
    .with("connector", "mysql")
    .with("offset.storage", "filesystem")
    // ... 更多配置项,如 host、port、database、table、username、password 等
DebeziumTableSource<String> source = DebeziumTableSource.forConnector("mysql")
    .withProperty(config)
    .deserializer(new JsonDebeziumDeserializationSchema<>())
    .createSnapshotSource(false) // 如果只需要消费增量变更,不需要全量快照
    .build();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(4); // 设置并行度
DataStream<String> stream = env.fromSource(source, WatermarkStrategy.noWatermarks(), "MySQL CDC Source");
// ... 进行后续的数据处理
env.execute("Flink MySQL CDC Job");

这里的 DebeziumTableSource 是基于 Debezium 的并行源,能够在 snapshot 和 CDC 阶段实现并行读取,无需显式使用 MySqlParallelSource。当你设置了恰当的并行度时,Flink 会自动并行地读取 MySQL 数据库的变更日志。

请注意,上述代码片段仅为示意,实际使用时需要根据 Flink 和 Debezium 的最新版本进行适配。在实际项目中,还需根据实际情况配置Debezium所需的全部连接参数,并根据数据结构和需求配置相应的反序列化方案。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592279


问题五:link CDC里pgsql中,全量阶段多个作业启动时,不能多个作业并行进行全量同步吗?


Flink CDC里pgsql中,全量阶段多个作业启动时,不能多个作业并行进行全量同步吗,多个作业多个库分别启动作业后数据库中是同一事务,只能按顺序一个作业全量执行完了才能执行第二个?flink cdc 2.4.1的版本。


参考回答:

建议使用增量快照,可以多并行度启动。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592280

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
zdl
|
23天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
139 56
|
1月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
58 9
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
44 2
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
3月前
|
算法 API Apache
Flink CDC:新一代实时数据集成框架
本文源自阿里云实时计算团队 Apache Flink Committer 任庆盛在 Apache Asia CommunityOverCode 2024 的分享,涵盖 Flink CDC 的概念、版本历程、内部实现及社区未来规划。Flink CDC 是一种基于数据库日志的 CDC 技术实现的数据集成框架,能高效完成全量和增量数据的实时同步。自 2020 年以来,Flink CDC 经过多次迭代,已成为功能强大的实时数据集成工具,支持多种数据库和数据湖仓系统。未来将进一步扩展生态并提升稳定性。
649 2
Flink CDC:新一代实时数据集成框架
|
3月前
|
消息中间件 canal 数据采集
Flink CDC 在货拉拉的落地与实践
陈政羽在Apache Asia Community Over Code 2024上分享了《货拉拉在Flink CDC生产实践落地》。文章介绍了货拉拉业务背景、技术选型及其在实时数据采集中的挑战与解决方案,详细阐述了Flink CDC的技术优势及在稳定性、兼容性等方面的应用成果。通过实际案例展示了Flink CDC在提升数据采集效率、降低延迟等方面的显著成效,并展望了未来发展方向。
570 14
Flink CDC 在货拉拉的落地与实践
|
2月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
131 0
|
2月前
|
SQL 运维 数据管理
在对比其他Flink实时计算产品
在对比其他Flink实时计算产品
|
4月前
|
存储 SQL 关系型数据库
实时计算 Flink版产品使用问题之如何高效地将各分片存储并跟踪每个分片的消费位置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 实时计算 Flink版