安全多方计算之十:联邦学习与安全多方计算

简介: 安全多方计算之十:联邦学习与安全多方计算


1. 联邦学习

联邦学习(FL,Federated Learning)是谷歌于2016年提出的一种分布式机器学习框架,可以在保护个人数据隐私的前提下,联合多方用户的数据实现模型训练

联邦学习用于解决“数据孤岛”问题,核心思想是“数据不动模型动,数据可用不可见”。

  • 传统机器学习中,数据需集中在一起进行模型训练,这样会暴露个人隐私,且数据共享也面临信任问题。
  • 联邦学习中,数据被分散在多个地方,每个地方的数据在本地进行处理形成本地模型,本地模型通过联邦学习算法进行汇聚和更新,最终得到一个全局模型。这样既保护了隐私,同时也避免了数据共享的信任问题。

联邦学习的应用场景非常广泛,如医疗领域,由于涉及到患者的隐私数据,传统的中心化机器学习方法难以实现,而联邦学习可以实现不同医院之间模型的共享和更新,从而提高诊断和治疗的准确性和效率;金融领域,联邦学习可用于风险控制、欺诈检测等,提高金融机构的业务效率和风险管理能力;智能物联网领域,联邦学习可用于实现不同设备之间的智能交互和协作,提高智能物联网系统的性能和可靠性。

2. 安全多方计算

安全多方计算(SMC,Secure Multi-party Computation)由由中国计算机科学家、2000年图灵奖获得者姚启智教授于1982年在论文《Protocols for secure computations》中以百万富翁问题(两个百万富翁Alice和Bob想知道他们两个谁更富有,但他们都不想让对方及其他第三方知道自己财富的任何信息),开创了密码学研究的新领域。

安全多方计算定义:是指在一个互不信任的多用户网络中,n nn个参与者P 1 , P 2 , . . . , P n P_1,P_2,...,P_nP1,P2,...,Pn,每个持有秘密数据x i x_ixi,希望共同计算出函数f ( x 1 , x 2 , . . . , x n ) = ( y 1 , y 2 , . . . , y n ) f(x_1,x_2,...,x_n)=(y_1,y_2,...,y_n)f(x1,x2,...,xn)=(y1,y2,...,yn)P i P_iPi仅得到结果y i y_iyi,并且不泄露x i x_ixi给其他参与者。

安全多方计算同样广泛应用于政务、医疗、金融、交通等各个领域中保护隐私的数据统计、数据分析、数据挖掘。如用户画像要从多个数据源中获取用户的身份、属性、行为、关系等各类数据,并进行群体的分析挖掘。但在数据的获取与计算过程中会导致用户隐私泄露,可使用安全多方计算技术,在保护隐私的情况下,对数据进行分析计算。

3. 联系与区别

(1)联系

联邦学习和安全多方计算都是解决数据隐私保护问题的技术,有以下共同点:

  • 都是在多个参与方之间进行数据计算和交互
  • 都是在不共享原始数据的情况下进行数据计算
  • 都需要使用加密算法和协议来保障数据安全性

(2)区别

  • 目的不同。联邦学习的目的是使用多方数据进行模型训练,从而提高模型的准确性和性能;安全多方计算的目的是在多个参与方之间进行数据计算,共同得出结果。
  • 数据处理方式不同。联邦学习中,各方将自己的本地模型参数上传进行聚合,从而得到全局模型;安全多方计算中,数据计算是通过密文交互实现的。
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
机器学习/深度学习 并行计算 安全
安全多方计算之一:什么是安全多方计算
安全多方计算之一:什么是安全多方计算
1486 0
【论文速递】NDSS2021 - 操纵 Byzantine: 联邦学习的模型中毒攻击与防御优化
【论文速递】NDSS2021 - 操纵 Byzantine: 联邦学习的模型中毒攻击与防御优化
|
安全 网络安全 PHP
网络安全-RCE(远程命令执行)漏洞原理、攻击与防御
网络安全-RCE(远程命令执行)漏洞原理、攻击与防御
1692 0
网络安全-RCE(远程命令执行)漏洞原理、攻击与防御
|
10月前
|
机器学习/深度学习 算法 安全
Federated Learning
联邦学习(Federated Learning, FL)是一种新兴的分布式机器学习范式,旨在通过“数据不动模型动”的方式,在不共享原始数据的情况下实现多方协同训练,保护数据隐私。本文综述了国内外研究现状,涵盖学术研究和产业应用进展,分析了其核心特征、技术挑战及未来发展方向,为相关领域的研究者和从业者提供参考。
|
机器学习/深度学习 人工智能 自然语言处理
AI驱动的自动化测试:提升软件质量的未来之路
【9月更文挑战第3天】AI驱动的自动化测试是提升软件质量的未来之路。它借助AI技术的力量,实现了测试用例的智能生成、测试策略的优化、故障预测与定位等功能的自动化和智能化。随着技术的不断进步和应用场景的不断拓展,AI驱动的自动化测试将在未来发挥更加重要的作用,为软件开发和运维提供更加高效、准确和可靠的解决方案。
|
机器学习/深度学习 安全 算法
安全多方计算之三:同态加密
安全多方计算之三:同态加密
2749 42
|
存储 人工智能 安全
区块链和人工智能的关系以及经典案例
区块链和人工智能的关系以及经典案例
|
机器学习/深度学习 算法 Python
【Python机器学习专栏】数据特征选择与降维技术
【4月更文挑战第30天】本文探讨了Python中数据特征选择与降维技术在机器学习和数据分析中的应用。特征选择包括单变量选择、递归特征消除(RFE)、树模型的特征重要性和相关性分析,有助于去除冗余和无关特征。降维技术涵盖PCA、LDA以及非线性方法如KPCA和ISOMAP,用于在低维空间保留信息。这些技术能简化数据、提升模型性能及可解释性。
366 0
|
机器学习/深度学习 人工智能 安全
一文搞懂隐私计算
一文搞懂隐私计算
4771 0
|
机器学习/深度学习 算法 大数据
机器学习 PAI-DSW 基础
机器学习 PAI-DSW 基础
1361 0

热门文章

最新文章