隐私计算实训营第6讲-------隐语PIR介绍及开发实践丨隐私计算实训营 第1期

简介: 隐匿查询(PIR)允许用户在不暴露查询内容的情况下检索服务器数据库。PIR分为单服务器和多服务器方案,以及Index PIR和Keyword PIR两类。隐语目前实现了单服务器的SealPIR(用于Index PIR)和Labeled PSI(用于Keyword PIR)。SealPIR优化点包括:数据打包、查询向量压缩、支持多维和多个查询。未来,隐语PIR的计划包括性能提升、多服务器方案和新算法的探索。

隐匿查询(Private Information Retrieval PIR)定义

用户查询服务端数据库中的数据,但服务端不知道用户查询的是哪些数据
image.png
按服务器数量分类:
Ø 单服务器方案(Single Server)
Ø 多服务器方案(Multi-Server)
按查询类型分类:
Ø Index PIR
Ø Keyword PIR

隐语目前支持的PIR方式:
Single Server Index PIR : SealPIR
Single Server Keyword PIR:Labeled PSI

Index PIR-SealPIR介绍

image.png
SealPIR主要贡献:
• 多个数据pack到一个HE Plaintext
查询的db_index转换为plaintext_index
• 查询向量压缩到一个密文
显著减少通信量,server端可通过计算expand得到查询密文向量
• 支持多维查询
2维查询将数据转换为 根号n ∗ 根号n 的矩阵,减少expand计算量
• 支持多个查询
使用cuckoo hash支持同时进行多个查询

Index PIR-SealPIR介绍

image.png

Keyword PIR-Label SPI介绍

image.png

隐语 PIR后续计划

image.png

相关文章
|
算法 数据挖掘 调度
隐语实训营-第3讲:详解隐私计算框架的架构和技术要点
主要介绍隐语的隐私计算架构,并对每个模块进行拆解、分析,以期望不同使用者找到适合自己的模块,快速入手。
327 4
|
机器学习/深度学习 算法 数据可视化
# 隐私计算实训营note#3 详解隐私计算框架及技术要点
这一讲的内容是介绍蚂蚁的SecretFlow框架[第3讲:详解隐私计算框架及技术要点](https://www.bilibili.com/video/BV1dJ4m1b7AX/)。
|
安全 算法 Oracle
「隐语小课」Blazing Fast PSI 协议解读
「隐语小课」Blazing Fast PSI 协议解读
1536 0
|
数据采集 缓存 安全
隐语小课|非平衡隐私集合求交(Unbalanced PSI)协议介绍
隐语小课|非平衡隐私集合求交(Unbalanced PSI)协议介绍
1486 0
|
机器学习/深度学习 算法 安全
隐私计算训练营第三讲-详解隐私计算的架构和技术要点
SecretFlow 是一个隐私保护的统一框架,用于数据分析和机器学习,支持MPC、HE、TEE等隐私计算技术。它提供设备抽象、计算图表示和基于图的ML/DL能力,适应数据水平、垂直和混合分割场景。产品层包括SecretPad(快速体验核心能力)和SecretNote(开发工具)。算法层涉及PSI、PIR、数据分析和联邦学习(水平、垂直、混合)。此外,SecretFlow还有YACL密码库和Kusica任务调度框架,Kusica提供轻量化部署、跨域通信和统一API接口。
709 0
|
API 数据库
课6-匿踪查询和隐语PIR的介绍及开发实践
隐匿查询(PIR)允许用户从服务器检索数据而不暴露查询内容。类型包括单服务器与多服务器方案,以及Index PIR和Keyword PIR。隐语支持SealPIR用于单服务器Index PIR,压缩查询并支持多维和多查询处理。另外,它采用Labeled PSI实现单服务器Keyword PIR,优化了计算和通信效率,基于微软代码并扩展了功能,如OPRF、特定ECC曲线支持和预处理结果保存。隐语提供的PIR相关API包括`spu.pir_setup`和`spu.pir_query`。
课6-匿踪查询和隐语PIR的介绍及开发实践
|
算法 安全 大数据
隐私计算实训营第5讲-------隐私求交和隐语PSI介绍以及开发实践
隐私求交(Private Set Intersection, PSI)是利用密码学技术在不暴露数据集以外信息的情况下找到两集合的交集。隐语SPU支持三种PSI算法:ECDH(适合小数据集)、KKRT(基于Cuckoo Hashing和OT Extension,适合大数据集)和BC22PCG(使用伪随机相关生成器)。ECDH基于椭圆曲线 Diffie-Hellman,KKRT利用OT Extension实现高效处理,而BC22PCG通过压缩满足特定相关性的随机数减少通信量。此外,还有基于Oblivious Pseudo-Random Function (OPRF)的PSI协议。
1543 0
|
机器学习/深度学习 安全 算法
「机密计算-隐私计算」科普
「机密计算-隐私计算」科普
1874 0
|
运维 安全 数据安全/隐私保护
隐语(SecretFlow)联邦学习实训营第一期笔记
**摘要:** 本文探讨了数据可信流通的概念,强调了数据来源确认、使用范围界定、流程追溯和风险防范的重要性。数据流通分为内循环(安全域内)和外循环(跨域),其中外循环面临黑客攻击、内部泄露和数据滥用等风险。为建立技术信任,提出了身份验证、利益对齐、能力预期和行为审计四点要求,涉及隐私计算、可信计算等技术。隐语作为隐私计算框架,提供服务以支持数据安全流通,通过开源降低接入门槛,并具备统一架构、原生应用、开放拓展、高性能和多轮安全验证等优势。开源隐语助力解决数据权属和信任问题,促进数据要素的安全流通。
|
运维 安全 数据安全/隐私保护