课9-隐语多方安全计算在安全核对的行业实践

简介: 该文档介绍了隐私计算技术在助贷平台业务中的应用,通过风洞隐私安全核对方案实现数据比对而不泄露信息。风洞方案支持规模化核对,特色功能在于适应不同场景。技术共建部分提到,使用SCQL进行差异化产品表达,分为安全核对和联合策略两个方面,并与隐语合作开发安全自证功能,确保可审查和可视化。未来面临低门槛、高性能、易用性和实时性的挑战。

1. 业务背景

  • 行业背景
    image.png

隐私计算技术实现数据的可用不可见,可用不可得
助贷平台业务模式

  • 数据差异的来源

2. 产品方案

解决方案:风洞隐私安全核对

  • 基于隐私SCQL的数据比对应用
  • 支持1 to N的规模化核对
    image.png

  • 特色功能:支撑规模化的核对与排查

3. 技术共建

  • 对SCQL的封装方式:针对应用场景的差异化产品表达
    风洞:安全核对
    风洞:联合策略
    image.png
  • 安全自证:与隐语共建安全自证的相关能力
    明细日志模式-开关
    可审查、可视化、可攻防
  • 未来挑战
    低门槛、高性能、易用性、实时性
相关文章
|
9月前
|
算法 数据挖掘 调度
隐语实训营-第3讲:详解隐私计算框架的架构和技术要点
主要介绍隐语的隐私计算架构,并对每个模块进行拆解、分析,以期望不同使用者找到适合自己的模块,快速入手。
159 4
|
9月前
|
监控 安全 数据可视化
第9讲:隐语多方安全计算在安全核对的行业实践丨隐私计算实训营 第1期
行业法规趋势强调数据安全与隐私保护,如《个人信息安全规范》、《数据安全法》和《个人信息保护法》,倡导最小权限原则和数据的有效利用。产品方案致力于在保障安全和隐私的前提下促进数据共享。技术共建中,与隐语合作构建安全自证能力,包括可审查性、可视化监控和可攻防的验证机制,确保数据操作透明且安全。
92 1
|
9月前
|
算法 数据库
隐私计算实训营第6讲-------隐语PIR介绍及开发实践丨隐私计算实训营 第1期
隐匿查询(PIR)允许用户在不暴露查询内容的情况下检索服务器数据库。PIR分为单服务器和多服务器方案,以及Index PIR和Keyword PIR两类。隐语目前实现了单服务器的SealPIR(用于Index PIR)和Labeled PSI(用于Keyword PIR)。SealPIR优化点包括:数据打包、查询向量压缩、支持多维和多个查询。未来,隐语PIR的计划包括性能提升、多服务器方案和新算法的探索。
399 3
|
9月前
|
安全 区块链 数据安全/隐私保护
2024.3.19隐语训练营第2讲笔记:隐私计算开源助力数据要素流通
本节课探讨了数据要素的流转和内外循环,在数据外循环中,存在数据权属和信任焦虑问题,为此提出了通过匿名化、隐私计算和区块链等技术建立技术信任体系。隐私计算遵循数据可用不可见、使用可控可计量和计算不可识的三大原则,并有安全分级标准。蚂蚁集团的隐语框架,有助于推动数据要素流通和行业进步,降低学习和应用门槛,同时增强用户对产品安全性的信心。
99 2
|
9月前
|
SQL 安全 数据挖掘
隐私计算实训营第7讲:隐语SCQL的架构详细拆解丨隐私计算实训营 第1期
SCQL是安全协作查询语言,让不信任的多方能在保护隐私的前提下进行联合数据分析。它假设参与者半诚实,支持多方(N>=2)合作,且具备SQL语法支持和性能优化。SCQL提供类似SQL的用户界面,通过CCL机制允许数据所有者控制数据使用权限。系统基于SPU的MPC框架运行,适用于多个应用场景。
196 0
|
9月前
第8讲:隐语SCQL的开发实践丨隐私计算实训营 第1期
SCQL 提供中心化和P2P两种部署架构。中心化依赖第三方的SCDB,各数据方仅需SCQLEngine;P2P模式无第三方,各数据方需SCQLEngine和SCQLBroker。使用流程包括配置、注册、启动和执行查询。P2P部署实践展示详细步骤。[查看部署教程](https://www.secretflow.org.cn/zh-CN/docs/scql/0.5.0b2/intro/p2p-tutorial)。
133 0
|
9月前
|
运维 安全
隐语隐私计算实训营-第一讲
主题:数据可信流通,从运维信任到技术信任
|
9月前
|
分布式计算 安全 算法
摩斯产品顺利通过BCTC联邦学习测评!
近日,摩斯通过国家金融科技测评中心(BCTC)联邦学习金融应用测评,成为行业内为数不多通过该项测评的厂商之一。摩斯也因此成为“BCTC多方安全计算+联邦学习”双重认证的厂商。
摩斯产品顺利通过BCTC联邦学习测评!
|
机器学习/深度学习 分布式计算 安全
一文详解隐私计算「四大技术路线」
隐私计算是一个快速发展的领域,涉及密码学、安全硬件、信息论、分布式计算等多个学科。目前公开的隐私计算技术资料和白皮书已经非常丰富,但是缺乏对各技术优缺点的深入分析和对比。本文将从性能、安全、隐私、功能、研发难度等多个角度分析对比各技术路线。
一文详解隐私计算「四大技术路线」
|
SQL 机器学习/深度学习 人工智能
星熠案例:基于“隐语”多方安全分析的智能化理赔
星熠案例:基于“隐语”多方安全分析的智能化理赔
276 0
星熠案例:基于“隐语”多方安全分析的智能化理赔