Python3实现旋转数组的3种算法

简介: Python3实现旋转数组的3种算法

一、引言

旋转数组是一种常见的数据结构问题,通常是指一个有序数组经过旋转后,使得所有元素逆序排列。例如,给定一个数组 [4,5,6,7,0,1,2],它可能经过旋转变为 [0,1,2,4,5,6,7]。解决旋转数组的问题对于理解算法设计和数据结构有重要意义。

二、线性时间复杂度算法

线性时间复杂度算法的基本思想是利用二分查找的思想,通过不断缩小搜索范围来找到目标元素。具体步骤如下:

确定数组的左右边界;

通过二分查找,确定目标元素所在的子数组;

如果目标元素在左半部分,直接返回索引;

如果目标元素在右半部分,则计算相对位置并返回。

下面是Python3代码实现:

def search_rotate_array(nums, target):  
    left, right = 0, len(nums) - 1  
    while left <= right:  
        mid = (left + right) // 2  
        if nums[mid] == target:  
            return mid  
        if nums[left] <= nums[mid]:  
            if target >= nums[left] and target < nums[mid]:  
                right = mid - 1  
            else:  
                left = mid + 1  
        else:  
            if target > nums[mid] and target <= nums[right]:  
                left = mid + 1  
            else:  
                right = mid - 1  
    return -1

三、二分查找算法

二分查找算法是一种常见的搜索算法,适用于有序数组。对于旋转数组,我们也可以利用二分查找的思想,但需要对搜索过程进行一些调整。具体步骤如下:

确定数组的左右边界;

通过二分查找,确定目标元素所在的子数组;

根据子数组的大小和左右边界的位置关系,确定目标元素的位置并返回。

下面是Python3代码实现:

def search_rotate_array_binary(nums, target):  
    left, right = 0, len(nums) - 1  
    while left <= right:  
        mid = (left + right) // 2  
        if nums[mid] == target:  
            return mid  
        if nums[left] <= nums[mid]:  
            if target >= nums[left] and target < nums[mid]:  
                right = mid - 1  
            else:  
                left = mid + 1  
        else:  
            if target > nums[mid] and target <= nums[right]:  
                left = mid + 1  
            else:  
                right = mid - 1  
    return -1

四、分治算法

分治算法是一种将问题分解为若干个子问题,然后递归求解子问题的算法。对于旋转数组,我们可以将其分为三种情况进行讨论:

旋转点在左半部分;

旋转点在右半部分;

旋转点在中间。

在每种情况下,我们分别处理左半部分、中间部分和右半部分的子数组,然后将结果进行合并,找到目标元素的位置并返回。

下面是Python3代码实现:

def search_rotate_array_divide(nums, target):  
    def find_pivot(nums):  
        if nums[0] <= nums[-1]:  
            return 0  
        for i in range(len(nums) // 2):  
            if nums[i] > nums[i + len(nums) // 2]:  
                return i + 1  
        return -1  
      
    pivot = find_pivot(nums)  
    if pivot == -1:  
        return binary_search(nums, 0, len(nums) - 1, target)  
    if pivot == 0:  
        if nums[0] <= target:  
            return binary_search(nums, 0, pivot - 1, target)  
        else:  
            return binary_search(nums, pivot, len(nums) - 1, target)  
    if nums[pivot - 1] <= target and nums[pivot] >= target:  
        return pivot - 1  
    if nums[pivot] <= target and nums[pivot + 1] >= target:  
        return pivot  
    if nums[0] <= target:  
        return binary_search(nums, 0, pivot - 1, target)  
    else:  
        return binary_search(nums, pivot, len(nums) - 1, target)

五、性能分析

线性时间复杂度算法:该算法的时间复杂度为O(log n),其中n为数组的长度。在处理大型旋转数组时,该算法的性能表现良好。

二分查找算法:该算法的时间复杂度也为O(log n)。与线性时间复杂度算法相比,二分查找算法的实现更为简单,但需要预先确定旋转点的位置。

分治算法:该算法的时间复杂度为O(log n),但实现较为复杂。在处理大型旋转数组时,分治算法的性能表现良好,但需要注意处理各种特殊情况。

六、结论

旋转数组问题是一种常见的数据结构问题,对于理解算法设计和数据结构有重要意义。本文介绍了三种实现旋转数组的算法:线性时间复杂度算法、二分查找算法和分治算法。

在实际应用中,可以根据具体情况选择合适的算法。线性时间复杂度算法和二分查找算法实现简单,适用于小型和中型旋转数组;而分治算法实现较为复杂,但适用于大型旋转数组。通过合理选择和优化算法,可以提高程序的性能和稳定性。

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
20 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
25天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
246 55
|
14天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
109 66
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
146 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
132 61
|
2月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
123 63
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
173 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
3天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
18天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
53 20
|
11天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。