Python实现从PDF和图片提取文字的方法总结

简介: Python实现从PDF和图片提取文字的方法总结

在Python中,有许多库可以用于从PDF和图片文件中提取文字。下面我们将介绍一些常用的库和方法,并对它们进行比较和总结。

一、从PDF提取文字

1.1 PyPDF2

PyPDF2是一个用于读取、合并和拆分PDF文件的Python库。它可以用来提取PDF中的文字,但需要注意的是,PyPDF2只能提取一些简单的PDF文件中的文字,对于一些复杂的PDF文件(如包含图像、表格等元素的PDF),提取文字的效果可能不理想。

使用PyPDF2提取PDF文字的示例代码如下:

import PyPDF2  
  
pdf_file = open('example.pdf', 'rb')  
pdf_reader = PyPDF2.PdfFileReader(pdf_file)  
text = ''  
for page_num in range(pdf_reader.numPages):  
    page = pdf_reader.getPage(page_num)  
    text += page.extractText()  
pdf_file.close()  
print(text)

1.2 PDFMiner

PDFMiner是另一个用于从PDF文件中提取信息的Python库。与PyPDF2相比,PDFMiner更加灵活,可以处理更复杂的PDF文件。但是,PDFMiner需要更多的计算资源,因此在处理大型PDF文件时可能会比较慢。

使用PDFMiner提取PDF文字的示例代码如下:

from pdfminer.high_level import extract_text  
  
pdf_file = open('example.pdf', 'rb')  
text = extract_text(pdf_file)  
pdf_file.close()  
print(text)

二、从图片提取文字

2.1 PIL(Python Imaging Library)和OCRopus4

使用PIL库可以方便地读取和处理图像文件,包括将图像转换为灰度图像、去除噪声、二值化等预处理步骤。OCRopus4是一个基于深度学习的OCR(光学字符识别)工具,可以用于从图像中提取文字。OCRopus4需要训练模型才能达到较好的识别效果,但这也意味着它可以根据不同的数据集进行优化。

使用PIL和OCRopus4提取图片文字的示例代码如下:

from PIL import Image  
import ocropus4 as op4  
  
image = Image.open('example.png')  
text = ''  
for page in op4.iter_pages(image):  
    for line in page:  
        for word in line:  
            text += word.text + ' '  
print(text)

2.2 Tesseract OCR

Tesseract OCR是一种广泛使用的OCR工具,它可以用于从图像中提取文字。Tesseract OCR具有较高的识别精度和速度,同时支持多种语言。在Python中,可以使用pytesseract库来调用Tesseract OCR。需要注意的是,Tesseract OCR对于一些复杂或低质量的图像可能识别效果不佳。

使用pytesseract提取图片文字的示例代码如下:

try:   
    from PIL import Image   
except ImportError:   
    import Image   
import pytesseract   
   
text = pytesseract.image_to_string(Image.open('example.png'))   
print(text)

三、总结与比较

以上介绍了从PDF和图片提取文字的几种方法,包括PyPDF2、PDFMiner、PIL和OCRopus4以及pytesseract。下面对这些方法进行总结和比较。

  1. 适用范围:PyPDF2适用于简单的PDF文件,对于复杂的PDF文件可能无法准确提取文字;PDFMiner可以处理更复杂的PDF文件,但需要更多的计算资源;PIL和OCRopus4适用于图片文件,但OCRopus4需要训练模型才能达到较好的识别效果;pytesseract也适用于图片文件,并具有较高的识别精度和速度。
  2. 性能:PyPDF2和PDFMiner在处理大型PDF文件时可能会较慢;OCRopus4需要训练模型,但一旦训练完毕,识别速度可能较快;pytesseract使用Tesseract OCR引擎,识别速度也较快。
  3. 灵活性:PyPDF2和PDFMiner提供了更高级的功能,例如提取表格、处理加密PDF等;PIL和OCRopus4以及pytesseract主要用于图像处理和OCR识别。
  4. 易用性:PyPDF2和PDFMiner的使用较为复杂,需要更多的配置和处理;PIL、OCRopus4和pytesseract相对较容易使用。

根据以上总结和比较,选择适合的方法取决于具体的应用场景和需求。如果需要处理简单的PDF文件并提取其中的文字,PyPDF2是一个不错的选择。如果需要处理更复杂的PDF文件或对PDF文件进行高级处理,可以考虑使用PDFMiner。对于从图片中提取文字,PIL和OCRopus4或pytesseract都是不错的选择,其中OCRopus4需要更多的预处理和训练模型,但可能提供更高的识别精度;pytesseract则提供了更简洁的使用方式,但在一些复杂或低质量的图像上可能识别效果不佳。

总之,以上介绍的方法都可以用于从PDF和图片中提取文字,但需要根据具体的应用场景和需求进行选择和使用。

相关文章
|
1天前
|
文字识别 测试技术 数据安全/隐私保护
案例:批量区域识别内容重命名,批量识别扫描PDF区域内容识别重命名,批量识别图片区域内容重命名图片修改图片名字,批量识别图片区域文字并重命名,批量图片部分识别内容重命文件,PDF区域内容提取重命名
该内容介绍了如何使用区域识别重命名软件高效整理图片,例如将图片按时间及内容重命名,适用于简历、单据等识别。文中提供了软件下载链接(百度云盘和腾讯网盘),并列出软件使用的几个关键条件,包括文字清晰、文件名长度限制等。示例展示了银行单据和公司工作单据的识别情况。文章还提及OCR技术在图片文字识别中的应用,强调了识别率、误识率和用户友好性等评估指标。如有类似需求,读者可留言或下载软件测试,并提供图片以获取定制的识别方案。
小白入门必备!计算机科学教程的Python精要参考PDF开放下载!
随着互联网产业的高速发展,在网络上早已积累了极其丰富的Python学习资料,任何人都可以基于这些资源,自学掌握 Python。 但实际上,网络上充斥的资源太多、太杂且不成体系,在没有足够的编程/工程经验之前,仅靠“看”线上资源自学,的确是一件非常困难的事。
|
5天前
|
Python
2024年最全用Python和PIL美化图像:文本覆盖技术实战,Python高级面试题pdf
2024年最全用Python和PIL美化图像:文本覆盖技术实战,Python高级面试题pdf
|
5天前
|
数据采集 Python
2024年Python最新【Python基础教程】快速找到多个字典中的公共键(key)的方法,秋招面试问题
2024年Python最新【Python基础教程】快速找到多个字典中的公共键(key)的方法,秋招面试问题
2024年Python最新【Python基础教程】快速找到多个字典中的公共键(key)的方法,秋招面试问题
|
6天前
|
数据采集 数据安全/隐私保护 Python
2024年最新【Python】如何用Python来操作PDF文件,收藏(2),2024年最新阿里p7Python面试题
2024年最新【Python】如何用Python来操作PDF文件,收藏(2),2024年最新阿里p7Python面试题
2024年最新【Python】如何用Python来操作PDF文件,收藏(2),2024年最新阿里p7Python面试题
|
6天前
|
程序员 PHP Python
2024年Python最全Python基础教程:keys()、values()和 items()方法,百度面试题php
2024年Python最全Python基础教程:keys()、values()和 items()方法,百度面试题php
2024年Python最全Python基础教程:keys()、values()和 items()方法,百度面试题php
|
6天前
|
算法 开发工具 Python
python排序的几种方法(3)
python排序的几种方法(3)
|
6天前
|
算法 程序员 Python
python排序的几种方法(1)
python排序的几种方法(1)
|
11天前
|
Web App开发 Windows
【Windows】 chrome 如何下载网站在线预览PDF文件,保存到本地
【Windows】 chrome 如何下载网站在线预览PDF文件,保存到本地
193 0
|
11天前
|
前端开发
开发过程中遇到过的docx、pptx、xlsx、pdf文件预览多种方式
开发过程中遇到过的docx、pptx、xlsx、pdf文件预览多种方式
27 0