Loguru:Python中强大的日志库

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
日志服务 SLS,月写入数据量 50GB 1个月
简介: Loguru:Python中强大的日志库

在Python中,日志记录是一种重要的调试和分析工具。Loguru是Python中一个流行的日志库,它提供了强大的日志记录功能,使得开发人员能够轻松地跟踪和调试代码。本文将介绍Loguru的安装和使用,并通过示例演示其基本功能和高级特性。

一、Loguru的安装

Loguru可以通过pip进行安装,打开终端或命令提示符,输入以下命令即可完成安装:

pip install loguru

二、Loguru的使用

2.1 日志级别的设置

Loguru支持多种日志级别,包括debug、info、warning、error和critical等级别。通过设置日志级别,您可以控制日志输出的详细程度。在Loguru中,您可以使用logger.add_level()方法添加自定义日志级别。以下是一个示例:

from loguru import logger  
  
logger.add_level(20, "Custom Level")  
logger.set_level(20)  # 设置日志级别为Custom Level  
logger.debug("This is a debug message")  # 不会输出,因为级别低于设置的Custom Level  
logger.info("This is an info message")  # 不会输出,因为级别低于设置的Custom Level  
logger.CustomLevel("This is a message from custom level")  # 输出,因为级别等于设置的Custom Level

2.2 日志的输出格式

Loguru允许您自定义日志的输出格式。您可以通过设置logger.formatter来指定日志的输出格式。以下是一个示例:

from loguru import logger  
from datetime import datetime  
  
logger.add_handler(logger.FileHandler("log.txt", mode="a"))  # 添加文件日志处理器  
logger.set_level(10)  # 设置日志级别为info  
logger.formatter = (  
    "{asctime} - {name} - {level} - {message}"  
)  # 设置日志输出格式,包括时间、名称、级别和消息  
logger.info("This is an info message")  # 输出:2023-07-05 14:30:00 - __main__ - INFO - This is an info message

2.3 日志轮转与压缩

Loguru提供了日志轮转和压缩的功能,可以帮助您管理大量的日志文件。通过设置FileHandler的rotation参数,您可以指定日志文件的最大大小和保留日志文件的数量。以下是一个示例:

from loguru import logger  
from datetime import datetime, timedelta  
import os  
  
filename = "log.txt"  # 日志文件名  
max_bytes = 1024 * 1024 * 10  # 10MB  
backup_count = 5  # 保留5个日志文件  
handler = logger.FileHandler(filename, mode="a", rotation=(max_bytes, backup_count))  # 添加日志处理器并设置轮转参数  
logger.add_handler(handler)  # 添加日志处理器到logger对象中  
logger.set_level(10)  # 设置日志级别为info  
logger.info("This is an info message")  # 输出:2023-07-05 14:30:00 - __main__ - INFO - This is an info message

2.4 日志的彩色输出

Loguru还支持日志的彩色输出,使得日志在控制台显示时更加易读和美观。您可以通过设置logger.colored参数来开启或关闭彩色日志输出。以下是一个示例:

from loguru import logger  
  
logger.add_handler(logger.StreamHandler())  # 添加控制台日志处理器  
logger.set_level(10)  # 设置日志级别为info  
logger.colored = True  # 开启彩色日志输出  
logger.info("This is an info message")  # 输出:INFO This is an info message

2.5 在生产环境中使用Loguru

在生产环境中,您可能希望将日志记录到文件中,而不是输出到控制台。Loguru提供了FileHandler类来处理这种情况。以下是一个示例:

from loguru import logger  
  
logger.add_handler(logger.FileHandler("production.log", mode="a"))  # 添加文件日志处理器  
logger.set_level(10)  # 设置日志级别为info  
logger.info("This is a production message")  # 日志将写入到production.log文件中

2.6 日志的过滤和搜索

Loguru还提供了强大的日志过滤和搜索功能。您可以使用logger.filter()方法来设置自定义的过滤器,只记录符合特定条件的日志。以下是一个示例:

from loguru import logger  
import re  
  
logger.add_handler(logger.FileHandler("log.txt", mode="a"))  # 添加文件日志处理器  
logger.set_level(10)  # 设置日志级别为info  
logger.filter(r"^\w+/(?!ignore).*")  # 过滤掉所有路径中包含"ignore"的文件日志  
logger.info("This is an info message")  # 日志将写入到log.txt文件中,但不会被过滤掉

2.7 日志的自定义格式化

除了之前提到的formatter参数外,Loguru还允许您在每个日志处理器上自定义日志的格式化方式。这可以通过设置handler.formatter来实现。以下是一个示例:

from loguru import logger  
from datetime import datetime  
  
logger.add_handler(logger.FileHandler("log.txt", mode="a"))  # 添加文件日志处理器  
logger.set_level(10)  # 设置日志级别为info  
  
handler = logger.handlers[0]  # 获取文件日志处理器  
handler.formatter = (  
    "{asctime} - {name} - {level} - {message}"  
)  # 设置日志输出格式,包括时间、名称、级别和消息  
logger.info("This is an info message")  # 输出:2023-07-05 14:30:00 - __main__ - INFO - This is an info message

2.8 日志的上下文信息

Loguru支持在日志中添加上下文信息,这对于跟踪特定事件非常有用。您可以使用logger.bind()方法来绑定上下文信息,然后在日志消息中使用占位符来引用这些信息。以下是一个示例:

from loguru import logger  
  
logger.add_handler(logger.FileHandler("log.txt", mode="a"))  # 添加文件日志处理器  
logger.set_level(10)  # 设置日志级别为info  
  
with logger.bind(user_id=123, action="view"):  # 绑定上下文信息  
    logger.info("User {user_id} performed action {action}")  # 日志消息中包含上下文信息

2.9 日志的异步处理

对于需要处理大量日志或需要异步操作的情况,Loguru提供了异步日志处理功能。您可以使用AsyncHandler类来创建一个异步日志处理器,然后将它添加到logger对象中。以下是一个示例:

from loguru import logger  
import asyncio  
  
async def async_handler(record):  
    await asyncio.sleep(1)  # 模拟异步操作  
    print(record)  # 处理日志记录  
  
logger.add_handler(AsyncHandler(async_handler))  # 添加异步日志处理器  
logger.set_level(10)  # 设置日志级别为info  
logger.info("This is an async message")  # 日志将异步处理,不会阻塞主线程

2.10 日志的搜索和筛选

Loguru提供了强大的日志搜索和筛选功能。您可以使用logger.search()方法来搜索特定的日志消息。此外,您还可以使用logger.filter()方法来筛选符合特定条件的日志。以下是一个示例:

from loguru import logger  
  
logger.add_handler(logger.FileHandler("log.txt", mode="a"))  # 添加文件日志处理器  
logger.set_level(10)  # 设置日志级别为info  
logger.info("This is an info message")  # 输出:2023-07-05 14:30:00 - __main__ - INFO - This is an info message  
  
# 搜索特定的日志消息  
result = logger.search("info message")  
print(result)  # 输出:['2023-07-05 14:30:00 - __main__ - INFO - This is an info message']  
  
# 筛选特定条件的日志  
result = logger.filter(level=10).all()  # 筛选所有级别为10的日志  
print(result)  # 输出:['2023-07-05 14:30:00 - __main__ - INFO - This is an info message']

2.11 日志的持久化存储

Loguru支持将日志消息持久化存储到数据库或其他存储系统中。您可以使用Loguru提供的插件或第三方库来实现这一功能。以下是一个示例:

from loguru import logger  
import redis  
  
# 创建一个Redis存储对象  
redis_store = redis.Redis(host='localhost', port=6379, db=0)  
  
# 将日志消息存储到Redis中  
logger.add_store(redis_store, level=10)  # 添加Redis存储处理器,级别为10  
logger.set_level(10)  # 设置日志级别为info  
logger.info("This is an info message")  # 日志将存储到Redis中

总结

Loguru是一个功能强大的Python日志库,提供了丰富的日志处理功能,包括灵活的日志处理器配置、上下文信息绑定、搜索、存储、导出和导入等。同时,Loguru还具有良好的性能表现和扩展性,方便用户根据需要进行自定义扩展。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
10天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
49 20
|
1月前
|
XML JSON 数据库
Python的标准库
Python的标准库
173 77
|
2月前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
135 4
数据分析的 10 个最佳 Python 库
|
1月前
|
XML JSON 数据库
Python的标准库
Python的标准库
56 11
|
2月前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
162 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
2月前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
83 8
|
2月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
125 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
1月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
53 4

热门文章

最新文章