【Ai生态开发】Spring AI上架,打造专属业务大模型,AI开发再也不是难事!

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 【Ai生态开发】Spring AI上架,打造专属业务大模型,AI开发再也不是难事!

需求 就是说假设现在有一个 商城系统 里面有查询订单的api和获取商品购买方式的api   用户只需要输入 “帮我看看我前几天买过最便宜的衣服”  经过语言处理 ai就能够调用 查询订单的api并在里面自动的添加查询条件以及 排序条件  这是我们的目标  本文就是来讲解实现这样的目标


Spring AI介绍


Spring AI 是 AI 工程师的一个应用框架,它提供了一个友好的 API 和开发 AI 应用的抽象,旨在简化 AI 应用的开发工序。


提供对常见模型的接入能力,目前已经上架 https://start.spring.io/,提供大家测试访问。(请注意虽然已经上架 start.spring.io,但目前还是在 Spring 私服,未发布至 Maven 中央仓库)


基本知识讲解:


函数调用


函数调用(Function Calling)是OpenAI在2023年6月13日对外发布的新能力。根据OpenAI官方博客描述,函数调用能力可以让大模型输出一个请求调用函数的消息,其中包含所需调用的函数信息、以及调用函数时所携带的参数信息。这是一种将大模型(LLM)能力与外部工具/API连接起来的新方式。


比如用户输入:


What’s the weather like in Tokyo?

使用function calling,可实现函数执行get_current_weather(location: string),从而获取函数输出,即得到对应地理位置的天气情况。这其中,location这个参数及其取值是借助大模型能力从用户输入中抽取出来的,同时,大模型判断得到调用的函数为get_current_weather。


开发人员可以使用大模型的function calling能力实现:


  • 在进行自然语言交流时,通过调用外部工具回答问题(类似于ChatGPT插件);
  • 将自然语言转换为调用API调用,或数据库查询语句;
  • 从文本中抽取结构化数据
  • 其它


实现步骤


1. 添加依赖

 <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-web</artifactId>
  </dependency>
  <dependency>
      <groupId>org.springframework.ai</groupId>
      <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
  </dependency>
 
 <!-- 配置 Spring 仓库 -->
  <repositories>
      <repository>
          <id>spring-milestones</id>
          <name>Spring Milestones</name>
          <url>https://repo.spring.io/milestone</url>
          <snapshots>
              <enabled>false</enabled>
          </snapshots>
      </repository>
  </repositories>


2. 配置 OpenAI 相关参数

spring:

 ai:

   openai:

     base-url: # 支持 openai-sb、openai-hk 等中转站点,如用官方则不填

     api-key: sk-xxxx


3.创建一个Spring Controller处理HTTP请求。


在Spring项目中创建一个Controller类,用于处理提取要素的HTTP请求和生成调用的API和变量集合。

import com.google.gson.Gson;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;
 
import java.util.HashMap;
import java.util.Map;
 
@RestController
public class ElementExtractionController {
 
    @Autowired
    private ElementExtractionService elementExtractionService;
 
    @PostMapping("/extract-elements")
    public ResponseEntity<Map<String, Object>> extractElements(@RequestBody String userInput) {
        Map<String, Object> result = elementExtractionService.extractElements(userInput);
        return ResponseEntity.ok(result);
    }
}


创建一个ElementExtractionService服务类来提取要素


创建一个服务类,用于封装提取要素的逻辑。在这个服务类中,可以使用自然语言处理技术来分析用户输入并提取需求和变量。可以使用现有的开源NLP库或API,如NLTK、SpaCy、Stanford CoreNLP、Google Cloud Natural Language API等


这里使用NLTK库来进行文本分析和实体识别,以提取用户输入中的需求和变量:

import org.springframework.stereotype.Service;
import edu.stanford.nlp.simple.Document;
import edu.stanford.nlp.simple.Sentence;
 
import java.util.HashMap;
import java.util.List;
import java.util.Map;
 
@Service
public class ElementExtractionService {
 
    public Map<String, Object> extractElements(String userInput) {
        // 使用NLTK库进行文本分析和实体识别
        Document doc = new Document(userInput);
        List<Sentence> sentences = doc.sentences();
 
        // 提取需求
        String requirement = extractRequirement(sentences);
 
        // 提取变量
        Map<String, String> variables = extractVariables(sentences);
 
        // 构建结果
        Map<String, Object> result = new HashMap<>();
        result.put("api", requirement);
        result.put("variables", variables);
        return result;
    }
 
    private String extractRequirement(List<Sentence> sentences) {
        // 在这里根据实际需求,从句子中提取需求
        // 可以使用关键词提取、模式匹配等方法
 
        // 这里示例直接返回第一句话作为需求
        if (!sentences.isEmpty()) {
            return sentences.get(0).text();
        }
 
        return "";
    }
 
    private Map<String, String> extractVariables(List<Sentence> sentences) {
        // 在这里根据实际需求,从句子中提取变量
        // 可以使用实体识别、关键词提取等方法
 
        // 这里示例直接从第一句话中提取名词作为变量
        Map<String, String> variables = new HashMap<>();
        if (!sentences.isEmpty()) {
            Sentence sentence = sentences.get(0);
            for (String word : sentence.words()) {
                if (isNoun(word)) {
                    variables.put(word, "true");
                }
            }
        }
 
        return variables;
    }
 
    private boolean isNoun(String word) {
        // 在这里根据实际需求,判断一个词是否为名词
        // 可以使用词性标注、词典匹配等方法
 
        // 这里示例简单判断是否以大写字母开头,作为名词的判断条件
        return Character.isUpperCase(word.charAt(0));
    }
}

那么下一步 :

4.封装一个API来操作open ai的Assistants API

创建一个Spring Service来操作OpenAI Assistants API。

创建一个服务类,用于封装操作OpenAI Assistants API的逻辑。

import com.google.gson.Gson;
import okhttp3.*;
 
import org.springframework.stereotype.Service;
 
import java.io.IOException;
 
@Service
public class OpenAIAssistantsService {
 
    public String callOpenAIAssistantsAPI(String prompt) {
        OkHttpClient client = new OkHttpClient();
        MediaType mediaType = MediaType.parse("application/json");
 
        JsonObject requestBody = new JsonObject();
        requestBody.addProperty("prompt", prompt);
        requestBody.addProperty("max_tokens", 32);
        requestBody.addProperty("stop", null);
 
        RequestBody body = RequestBody.create(mediaType, requestBody.toString());
        Request request = new Request.Builder()
                .url(OPENAI_API_URL)
                .post(body)
                .addHeader("Authorization", "Bearer " + OPENAI_API_KEY)
                .build();
 
        try {
            Response response = client.newCall(request).execute();
            if (response.isSuccessful()) {
                String responseBody = response.body().string();
                JsonObject jsonObject = new Gson().fromJson(responseBody, JsonObject.class);
                return jsonObject.getAsJsonObject("choices")
                        .get(0)
                        .getAsJsonObject()
                        .get("text")
                        .getAsString();
            } else {
                System.out.println("OpenAI Assistants API调用失败: " + response.code() + " - " + response.message());
            }
        } catch (IOException e) {
            System.out.println("OpenAI Assistants API调用异常: " + e.getMessage());
        }
 
        return null;
    }
}


创建一个自定义函数签名。


创建一个函数,它将调用其他项目中的API,并返回结果。

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
 
@Service
public class CustomFunctionService {
 
    @Autowired
    private OtherAPIService otherAPIService;
 
    public String customFunction(String apiId, String inputParameters) {
        // 根据API的ID筛选需要调用的API
        String apiEndpoint = getApiEndpoint(apiId);
 
        // 调用其他项目中的API,并进行处理
        String result = otherAPIService.callOtherAPI(apiEndpoint, inputParameters);
 
        // 对结果进行处理,并返回
        return "处理后的结果:" + result;
    }
 
    private String getApiEndpoint(String apiId) {//这里还会有很多具体业务的api就不一一列举了
        // 根据API的ID获取相应的API的URL或其他信息
        // 这里可以根据实际情况进行实现
        if (apiId.equals("api1")) {
            return "https://api.example.com/api1";
        } else if (apiId.equals("api2")) {
            return "https://api.example.com/api2";
        } else {
            throw new IllegalArgumentException("无效的API ID: " + apiId);
        }
    }
}

创建一个Spring Controller来调用自定义函数。

创建一个Controller类,它将调用自定义函数,并返回结果。

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;
 
import java.util.HashMap;
import java.util.Map;
 
@RestController
public class CustomFunctionController {
 
    @Autowired
    private CustomFunctionService customFunctionService;
 
    @PostMapping("/call-custom-function")
    public ResponseEntity<String> callCustomFunction(@RequestBody String userInput) {
        String result = customFunctionService.customFunction(userInput);
        return ResponseEntity.ok(result);
    }
}

在上面提取要素的服务(ElementExtractionService)的基础上,我们可以再封装一个Assistants服务,它将接受用户的请求并调用提取要素的服务。然后,Assistants服务将提取的要素和变量(uid)作为输入传递给封装了OpenAI的服务(OpenAIAssistantsService),并根据要素选择适当的API进行调用,并返回对应的结果。

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
 
import java.util.Map;
 
@Service
public class AssistantsService {
 
    @Autowired
    private ElementExtractionService elementExtractionService;
 
    @Autowired
    private OpenAIAssistantsService openAIAssistantsService;
 
    public String processUserRequest(String userInput) {
        // 提取要素
        Map<String, Object> elements = elementExtractionService.extractElements(userInput);
 
        // 获取要素和变量
        String requirement = (String) elements.get("api");
        Map<String, String> variables = (Map<String, String>) elements.get("variables");
        String uid = (String) elements.get("uid");
 
        // 调用OpenAI Assistants服务
        String result = openAIAssistantsService.callOpenAIAssistantsAPI(requirement, variables, uid);
 
        return result;
    }
}

AssistantsService类接受用户的请求,并调用ElementExtractionService来提取要素。然后,它获取要素、变量和uid,并将它们作为参数传递给OpenAIAssistantsService的callOpenAIAssistantsAPI方法。该方法根据要素选择适当的API进行调用,并返回结果。


具体的业务实现“提取要素”的逻辑部分


请注意,为了实现这个过程,还需要修改ElementExtractionService中提取要素的逻辑,以确保这个服务能符合具体业务的逻辑  例如我提到的 “帮我看看我买过最便宜的衣服”

import org.springframework.stereotype.Service;
import edu.stanford.nlp.simple.Document;
import edu.stanford.nlp.simple.Sentence;
 
import java.util.HashMap;
import java.util.List;
import java.util.Map;
 
@Service
public class ElementExtractionService {
 
    public Map<String, Object> extractElements(String userInput) {
        // 使用NLTK库进行文本分析和实体识别
        Document doc = new Document(userInput);
        List<Sentence> sentences = doc.sentences();
 
        // 提取需求
        String requirement = extractRequirement(sentences);
 
        // 提取变量
        Map<String, String> variables = extractVariables(sentences);
 
        // 构建结果
        Map<String, Object> result = new HashMap<>();
        result.put("api", requirement);
        result.put("variables", variables);
        return result;
    }
 
    private String extractRequirement(List<Sentence> sentences) {
        // 在这里根据实际需求,从句子中提取需求
        // 可以使用关键词提取、模式匹配等方法
 
        // 这里示例直接返回第一句话作为需求
        if (!sentences.isEmpty()) {
            return sentences.get(0).text();
        }
 
        return "";
    }
 
    private Map<String, String> extractVariables(List<Sentence> sentences) {
        // 在这里根据实际需求,从句子中提取变量
        // 可以使用实体识别、关键词提取等方法
 
        // 这里示例从第一句话中提取名词作为变量,并根据特定模式进行匹配
        Map<String, String> variables = new HashMap<>();
        if (!sentences.isEmpty()) {
            Sentence sentence = sentences.get(0);
            List<String> words = sentence.words();
            for (int i = 0; i < words.size() - 1; i++) {
                String currentWord = words.get(i);
                String nextWord = words.get(i + 1);
                if (isNoun(currentWord) && nextWord.equals("的")) {
                    variables.put(currentWord, "true");
                }
            }
        }
 
        return variables;
    }
 
    private boolean isNoun(String word) {
        // 在这里根据实际需求,判断一个词是否为名词
        // 可以使用词性标注、词典匹配等方法
 
        // 这里示例简单判断是否以大写字母开头,作为名词的判断条件
        return Character.isUpperCase(word.charAt(0));
    }
}

我将extractVariables方法进行了修改。现在它从第一句话中提取名词作为变量,并且根据特定模式进行匹配。特定模式是判断当前词是否为名词,以及下一个词是否为"的"。如果匹配成功,则将当前词作为变量存储。


这样我们就基本实现了一开始的那个目标:


假设现在有一个 商城系统 里面有查询订单的api和获取商品购买方式的api   用户只需要输入 “帮我看看我前几天买过最便宜的衣服”  经过语言处理 ai就能够调用 查询订单的api并在里面自动的添加查询条件以及 排序条件  这是我们的目标  本文就是来讲解实现这样的目标


更长远的目标:


希望能够开发出一款中间件(作为一个服务被注册到项目当中) 能够作为open ai 和具体项目的桥梁  即在开发配置当中我输入我的已有项目的服务的签名   那这个助手能够根据用户的自然语言输入 自动的去调用执行 项目中已有的各种服务 来做各种各样的复杂的数据库查询 等操作


本文所受启发 参考文献:


  1. Function calling and other API updates: https://openai.com/blog/function-calling-and-other-api-updates
  2. OpenAI assistants in LangChain: https://python.langchain.com/docs/modules/agents/agent_types/openai_assistants
  3. Multi-Input Tools in LangChain: https://python.langchain.com/docs/modules/agents/tools/multi_input_tool
  4. examples/Assistants_API_overview_python.ipynb: https://github.com/openai/opena...
  5. The Spring Boot Actuator is the one dependency you should include in every project (danvega.dev)
  6. Assistants API won't allow external web request - API - OpenAI Developer Forum
相关文章
|
6天前
|
XML JSON Java
Spring Boot 开发中常见的错误
本文总结了 Java 开发中常见的几个问题及其改进方法,包括:1. 过度使用 `@Component` 注解;2. `@ResponseBody` 注解的错误用法;3. `@Autowired` 的不当使用;4. `application.properties` 管理不善;5. 异常处理不当。每部分详细解释了错误情况和建议的改进方案,并提供了相应的代码示例。
36 11
|
6天前
|
IDE Java 测试技术
互联网应用主流框架整合之Spring Boot开发
通过本文的介绍,我们详细探讨了Spring Boot开发的核心概念和实践方法,包括项目结构、数据访问层、服务层、控制层、配置管理、单元测试以及部署与运行。Spring Boot通过简化配置和强大的生态系统,使得互联网应用的开发更加高效和可靠。希望本文能够帮助开发者快速掌握Spring Boot,并在实际项目中灵活应用。
24 5
|
4天前
|
前端开发 Java 开发者
这款免费 IDEA 插件让你开发 Spring 程序更简单
Feign-Helper 是一款支持 Spring 框架的 IDEA 免费插件,提供 URL 快速搜索、Spring Web Controller 路径一键复制及 Feign 与 Controller 接口互相导航等功能,极大提升了开发效率。
|
1月前
|
存储 人工智能 Java
Spring AI Alibaba 配置管理,用 Nacos 就够了
本文通过一些实操案例展示了 Spring AI Alibaba + Nacos 在解决 AI 应用中一系列复杂配置管理挑战的方案,从动态 Prompt 模板的灵活调整、模型参数的即时优化,到敏感信息的安全加密存储。Spring AI Alibaba 简化了对接阿里云通义大模型的流程,内置 Nacos 集成也为开发者提供了无缝衔接云端配置托管的捷径,整体上极大提升了 AI 应用开发的灵活性和响应速度。
219 13
|
24天前
|
前端开发 JavaScript Java
如何使用 Spring Boot 和 Angular 开发全栈应用程序:全面指南
如何使用 Spring Boot 和 Angular 开发全栈应用程序:全面指南
34 1
|
11天前
|
XML Java 数据格式
Spring Boot 开发中的常见失误
本文深入分析了Spring Boot开发中常见的失误,包括不当使用@Component、@ResponseBody、@Autowired注解,以及不良的异常处理和日志记录实践,提供了有效的规避策略,帮助开发者提升代码质量和系统性能。
|
1月前
|
存储 运维 安全
Spring运维之boot项目多环境(yaml 多文件 proerties)及分组管理与开发控制
通过以上措施,可以保证Spring Boot项目的配置管理在专业水准上,并且易于维护和管理,符合搜索引擎收录标准。
42 2
|
29天前
|
人工智能 Java API
Spring AI Fluent API:与AI模型通信的流畅体验
【11月更文挑战第24天】随着人工智能(AI)技术的飞速发展,越来越多的应用场景开始融入AI技术以提升用户体验和系统效率。在Java开发中,与AI模型通信成为了一个重要而常见的需求。为了满足这一需求,Spring AI引入了ChatClient,一个提供流畅API(Fluent API)的客户端,用于与各种AI模型进行通信。本文将深入探讨ChatClient的底层原理、业务场景、概念、功能点,并通过Java代码示例展示如何使用Fluent API与AI模型进行通信。
38 0
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
61 10