3.4堆的应用
3.4.1 堆排序
堆排序即利用堆的思想来进行排序,总共分为两个步骤:
1. 建堆
1.升序:建大堆;
2.降序:建小堆。
2. 利用堆删除思想来进行排序
这种写法有两个缺点:
1、先有一个堆的数据结构
2、空间复杂度复杂度的消耗
void HeapSort(int* a, int n) { HP hp; HeapInit(&hp); for (int i = 0; i < n; i++) { HeapPush(&hp, a[i]); } int i = 0; while (!HeapEmpty(&hp)) { //printf("%d ", HeapTop(&hp)); a[i++] = HeapTop(&hp); HeapPop(&hp); } HeapDestroy(&hp); }
所以我们可以稍微改进一下,使得只要有一个数组就可以进行堆排序:
假设要排一个升序:
先使用向下调整的方式建一个大堆,然后再写一个循环,当end=0时结束循环,每次进入循环先交换首尾数据,然后从头开始进行向下调整,每次end--。
void AdjustDown(int* a,int n, int parent) { int child = parent * 2 + 1; while(child < n) { if (a[child] < a[child + 1] && child + 1 < n) { child += 1; } if (a[child] > a[parent]) { Swap(&a[parent], &a[child]); parent = child; child = parent * 2 + 1; } else { break; } } } void HeapSort(int* a, int n) { //向下调整建堆 for (int i = (n-1-1)/2; i >= n; i--) { AdjustDown(a,n,i); } int end = n - 1; while (end > 0) { Swap(&a[0], &a[end]); AdjustDown(a, end, 0); end--; } }
3.4.2 TOP-K问题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
void PrintTopK(const char* filename, int k) { // 1. 建堆--用a中前k个元素建堆 FILE* fout = fopen(filename, "r"); if (fout == NULL) { perror("fopen fail"); return; } int* minheap = (int*)malloc(sizeof(int) * k); if (minheap == NULL) { perror("malloc fail"); return; } for (int i = 0; i < k; i++) { fscanf(fout, "%d", &minheap[i]); } // 前k个数建小堆 for (int i = (k - 2) / 2; i >= 0; --i) { AdjustDown(minheap, k, i); } // 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换 int x = 0; while (fscanf(fout, "%d", &x) != EOF) { if (x > minheap[0]) { // 替换你进堆 minheap[0] = x; AdjustDown(minheap, k, 0); } } for (int i = 0; i < k; i++) { printf("%d ", minheap[i]); } printf("\n"); free(minheap); fclose(fout); }
4.二叉树链式结构的实现
4.1 前置说明
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
首先我们手动创建一个链式二叉树,链接完后的二叉树大概是这个样子。
再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的。
从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
typedef struct BinaryTreeNode { struct BinaryTreeNode* left; struct BinaryTreeNode* right; int val; }BTNode; int main() { BTNode* node1 = BuyListNode(1); BTNode* node2 = BuyListNode(2); BTNode* node3 = BuyListNode(3); BTNode* node4 = BuyListNode(4); BTNode* node5 = BuyListNode(5); BTNode* node6 = BuyListNode(6); node1->left = node2; node1->right = node4; node2->left = node3; node4->left = node5; node4->right = node6; }
4.2二叉树的遍历
4.2.1 前序、中序以及后序遍历
学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:
1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
下面主要分析前序递归遍历,中序与后序图解类似:
前序,中序,后序遍历代码:
//前序 根 左子树 右子树 void PrevOrder(BTNode* root) { if (root == NULL) { printf("NULL "); return; } printf("%d ", root->val); PrevOrder(root->left); PrevOrder(root->right); } //中序 左子树 根 右子树 void InOrder(BTNode* root) { if (root == NULL) { printf("NULL "); return; } InOrder(root->left); printf("%d ", root->val); InOrder(root->right); } //右序 左子树 右子树 根 void PostOrder(BTNode* root) { if (root == NULL) { printf("NULL "); return; } PostOrder(root->left); PostOrder(root->right); printf("%d ", root->val); }
前序遍历递归图解:
先访问根,在访问左子树,也就是先访问1,再访问1的左子树,1的左子树的根是2,所以再访问2,2的左子树还没有访问完,所以访问2的左子树的根3,再访问3的左子树NULL,到这里3的左子树访问完毕,开始访问3的右子树NULL,到这里3的右子树也访问完毕,开始访问2的右子树NULL......以此类推
前序遍历递归展开图:
中序和后序都是一样的过程,总之就是要把对应的左子树/右子树遍历到NULL才返回上一层。
4.3二叉树节点个数
这里也要把问题转化为递归的子问题,使用一个三目操作符,差不多是一个后序遍历,如果当前节点为NULL则返回0,不是NULL则返回他的左子树和右子树的节点个数加1,也就是自己这个节点。比方说要求以下二叉树的节点个数,后序就是从3的左子树NULL开始,节点3的左右子树都为空,则节点3返回0+0+1=1,再求节点2,节点2的左子树返回了1,右子树返回0,所以节点2返回1+0+1=2,以此类推1的右子树返回的是3,所以1这个根节点的返回值是2+3+1=6.
//节点个数 int TreeSize(BTNode* root) { //后序 return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1; }
4.4二叉树叶子节点个数
叶子节点就是没有左右子树的节点,所以进入函数先判断当前节点是否为NULL,如果是则返回0,再判断是否为叶子节点,左子树和右子树都为NULL才是叶子节点,返回1。如果两个if都未进入,说明当前节点至少有一个子节点,再写一个递归往下找,返回左右子树的全部叶子节点。
int TreeLeafSize(BTNode* root) { //当前节点为空 if (root == NULL) return 0; //左右子树为空,自己就是叶子 if (root->left == NULL && root->right == NULL) return 1; //往下找 return TreeLeafSize(root->left) + TreeLeafSize(root->right); }
4.5二叉树第k层节点个数
要求第k层的节点个数,首先我们要知道一个思路,假设要求这个二叉树第3层的节点个数,那么第3层就相当于根节点1的第3层,根节点1的第三层又相当于2和4的第二层,2和4的第二层又相当于3,5,6的第一层,所以当k=1且不为空时,返回1即可。递归左右子树,每次k-1.
int TreeKLevel(BTNode* root, int k) { assert(k > 0); if (root == NULL) { return 0; } //走到最后一层 if (k == 1) { return 1; } //每次往下找一层 return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1); }
4.6二叉树查找值为x的节点
查找节点的话,首先判断当前节点是否满足val=x,如果满足直接返回当前节点,再判断是否为空,如果既不为空也不是要查找的节点则开始往左子树开始找,这个时候要创建一个变量tail来保存返回值,使用if判断返回值是什么情况,如果是空则开始往右子树找,如果不为空则说明找到了,直接返回tail。右子树也是一样的步骤,如果左右子树都没找到说明找不到了,返回NULL。
BTNode* TreeFind(BTNode* root,int x) { if (root->val == x) return root; if (root == NULL) return NULL; BTNode* tail = NULL; tail = TreeFind(root->left,x); if (tail) return tail; tail = TreeFind(root->right,x); if (tail) return tail; return NULL; }
今天的分享到这里就结束啦!感谢大家的阅读!!!