【技术探讨】无线通信模块拉距测试,是否一定要带笔记本电脑?

简介: 对于Sub-G的无线模块通常通信距离较远可以达到公里级甚至数公里之远,而笔记本的续航时间通常是2-3个小时,很多用户测试到一半,不得不提前终止测试,回去给笔记本电脑充电

用户购买无线模块后,一般第一步就是进行拉距测试,通常是准备2个笔记本电脑,一部电脑是放在在办公室有人值守,另外一部电脑在外场,双方使用手机或微信进行实时沟通测试结果,对于Sub-G的无线模块通常通信距离较远可以达到公里级甚至数公里之远,而笔记本的续航时间通常是2-3个小时,很多用户测试到一半,不得不提前终止测试,回去给笔记本电脑充电,次日再来。


而由于无线通信的距离是一个渐变的、模拟的数据,用户需要在临界区域反复的来回测试,才能比较准确的找到无线模块的稳定通信距离,这对笔记本电脑的续航时间带来了进一步的挑战,那么有什么办法加快这个测试过程呢?笔记本电脑一定是必须吗?


下面看看WiMi-net是如何脱离笔记本电脑,进行远程节点的拉距测试工作,如下的例举均以WiMi-net无线模块WM681B进行具体的介绍。



无线主站A与远程从站节点B之间的拉距测试


image.png


第一步:确保无线主站A正常工作

image.png


1、 无线主站模块WM681B,插入评估底板,安装固定螺丝,拧上吸盘天线后,接通电源(无线主站A建议使用稳定的交流电),组装成无线主站A


2、 打开无线主站A的电源开关,观察无线主站A的评估底板上的LED指示灯,先查看PWR(电源灯)是绿灯常亮,再看WTX(无线发射灯)红灯快速闪烁(30毫秒到50毫秒的闪烁周期)的状态,接着NET(无线联网灯)绿灯常亮,此时无线主站A正常工作。


3、 在整个拉距测试过程中,要确保无线主站A始终处于开机状态,测试中不得断开无线主站A的电源。


4、 远程从站节点B入网后,无线主站A的蜂鸣器会响一声,无线主站AWRX(无线接收灯)绿灯闪烁(闪烁规律与远程从站节点BWTX无线发射灯一致)。


注意:一般无线主站的天线架设离地面越高越好,故建议用户使用吸盘天线

 

第二步:远程无线从站节点B拉距测试  

 

  首先,将无线从站模块WM681B,插入评估底板,安装固定螺丝,拧上棒状天线,接通电源,组装成远程从站节点B。无线主站A的位置固定不变,从站节点B的位置发生如下近距离、稍远距离、远距离、最远距离、调整至最佳距离,分别观察从站节点BWRX(无线接收灯)、NET(无线联网灯)、WTX(无线发射灯)的指示状态。

image.png


1、 近距离


从站节点B距离无线主站A1米内时,打开远程从站节点B的电源开关,观察远程从站节点B的评估底板上的LED指示灯,先查看PWR(电源灯)是绿灯常亮,再观察WRX(无线接收灯)绿灯快速(周期在30毫秒到50毫秒之间)连续闪烁,说明收到无线主站A信号,此时蜂鸣器响一声, NET(无线联网灯)绿灯常亮,说明从站节点B注册成功,WTX(无线发射灯)红灯每间隔10秒闪烁一次,无线主站A和从站节点B之间就可以双向通信 ,关闭电源,拿着远程从站节点B开始拉距测试


2、 稍远距离


远程从站节点B与无线主站A相距约500米时,先拧上棒状天线,随后打开电源开关,PWR(电源灯)绿灯常亮,观察WRX(无线接收灯)绿灯闪烁周期在30毫秒到50毫秒之间快速连续闪烁,说明收到无线主站A信号,此时蜂鸣器响一声NET(无线联网灯)绿灯常亮,说明从站注册成功,WTX(无线发射灯)红灯每间隔10秒闪烁一次,无线主站A和从站节点B之间就可以双向通信 ,关闭电源


3、远距离


远程从站节点B与无线主站A相距约1500米时,先拧上棒状天线,随后打开电源,PWR(电源灯)绿灯常亮,先观察WRX(无线接收灯)绿灯时快时慢的无规律闪烁,说明收到主站A信号,但是有一定数量(比如10%)的破包率,此时再观察NET(无线联网灯)绿灯闪烁,随后WTX(无线发射灯)红灯闪烁,蜂鸣器响一声,NET无线联网指示灯,绿灯常亮,说明从站注册成功,无线主站A和从站节点B之间就可以双向通信 。关闭电源


4、最远距离


远程从站节点B与无线主站A相距约3000米时,先拧上棒状天线,随后打开电源,PWR(电源灯)绿灯常亮,先观察WRX(无线接收灯)绿灯偶尔闪烁,说明收到无线主站A信号,但是有很高数量(比如95%)的破包率,此时再观察WTX(无线发射灯)红灯在偶尔会闪烁,说明收到了主站的解码信号,解码正常,NET(无线联网灯)绿灯在慢闪烁,说明在无线主站A的覆盖半径内,可以收到主站的信号,正在执行注册,此时能看到WTX(无线发射灯)红灯在闪烁,说明从站正在与主站进行双向通信,过了2SWTX(无线发射灯)红灯会熄灭,此时NET(无线联网灯)就会熄灭,这就是注册失败。说明收发链路不对称,要么主站的发射能力强从站的发射能力弱,或主站的接收能力弱,从站接收能力强。无线通信失败


5、调整至最佳距离


将远程从站节点B与无线主站A的距离缩短一点(如2800米),调整到远程从站节点BLED指示状态可以再次出现远距离出现WRXNETWTXLED的指示情况,就可以确定无线主站A与远程从站节点B的可以通信的最远通信距离

 


无线主站A与多个远程从站节点(BC)之间的拉距测试


image.png

另外无线主站A也可以连接上笔记本电脑PC,更加直观的展示出无线网络的拓扑结构、远程节点AB的信号强度,远程调度从站节点AB的配置参数等,在这个过程中,PC本身不参与无线通信指令的下达工作,只负责客户数据的接收和发送工作。


远程从站节点BC,甚至100个从站节点,只要在无线主站A的信号覆盖半径内,都查看WRX无线接收指示灯、NET无线联网指示灯、WTX无线发射指示灯、蜂鸣器等指示,就可以同时进行拉距测试,也可以进行大规模的组网测试(多跳)、中小规模的性能验证,不需要用户进行任何的技术开发,很快就可以测试需要的性能指标。完全不需要用户带着笔记本电脑进行拉距测试。

目录
打赏
0
1
1
0
12
分享
相关文章
【硬件测试】基于FPGA的1024QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的1024QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同SNR条件下的性能测试。1024QAM调制将10比特映射到复平面上的1024个星座点之一,实现高效数据传输。硬件测试结果表明,在SNR=32dB和40dB时,系统表现出良好的性能。Verilog核心程序展示了各模块的连接与功能实现。
27 7
【硬件测试】基于FPGA的4FSK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前的文章《基于FPGA的4FSK调制解调系统》,增加了ILA在线数据采集模块和VIO在线SNR设置模块,实现了硬件测试版本。通过VIO设置不同SNR(如10dB和20dB),并展示了ILA采集的数据结果。四频移键控(4FSK)是一种数字调制方法,利用四个不同频率传输二进制数据,具有较高的频带利用率和抗干扰性能。输入的二进制数据分为两组,每组两个比特,对应四个频率f1、f2、f3、f4,分别代表二进制组合00、01、10、11。调制过程中选择相应频率输出,并进行幅度调制以增强抗干扰能力。接收端通过带通滤波器提取信号并还原为原始二进制数据。
22 7
【硬件测试】基于FPGA的256QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的256QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同信噪比(如30dB和40dB)的仿真测试,并提供配套操作视频。256QAM调制方案每个符号携带8比特信息,通过复数值星座图映射实现高效传输。Verilog代码展示了核心模块设计,包括SNR设置、数据处理和ILA测试分析,确保系统在实际硬件环境中的稳定性和性能。
15 2
【硬件测试】基于FPGA的16QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16QAM基带通信系统硬件测试版本。该系统在仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比(如15dB、25dB)的测试。16QAM是一种正交幅度调制方式,通过两路4ASK信号叠加实现,每个符号包含4比特信息。系统采用正交调幅法生成16QAM信号,并通过DAC转换为模拟信号。解调时使用正交相干解调,经低通滤波器恢复电平信号。开发板内完成发射与接收,无需定时同步模块。代码可移植至其他开发板,具体步骤见配套文档。
21 2
【硬件测试】基于FPGA的2ASK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍基于FPGA的2ASK调制解调系统,涵盖仿真效果、理论知识、Verilog核心程序及开发板使用说明。系统包含testbench、高斯信道模块和误码率统计模块,支持不同SNR设置。硬件测试版本增加了ILA在线数据采集和VIO在线SNR设置功能。2ASK调制通过改变载波振幅传输二进制信号,FPGA实现包括系统设计、Verilog编码、仿真测试和硬件部署。详细操作步骤见配套视频,代码适用于多种开发板,提供移植方法。
27 1
【硬件测试】基于FPGA的64QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的64QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集模块和vio在线SNR设置模块,支持不同SNR条件下的仿真与测试。通过设置SNR为25dB和30dB进行测试,验证了系统的可行性和性能。此外,本文详细阐述了64QAM调制解调的工作原理,包括信号生成、调制、解调及误码率测试等环节,并提供了Verilog核心程序代码。
16 0
【硬件测试】基于FPGA的16psk调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16PSK调制解调系统的硬件测试版本。系统在原有仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比下的性能测试。16PSK通过改变载波相位传输4比特信息,广泛应用于高速数据传输。硬件测试操作详见配套视频。开发板使用及移植方法也一并提供。
48 6
介绍频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术
在无线通信领域,专业术语是理解技术的关键。本文详细介绍了频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术,还涵盖了信号传播、信道容量、信噪比等深入概念。通过本文,你将掌握无线技术的核心知识,成为半个无线专家。
424 4
Massive MIMO技术在5G中的应用:开启无线通信的新篇章
Massive MIMO技术在5G中的应用:开启无线通信的新篇章
297 1
|
7月前
|
【2022年无线通信和与物联网专场】北京大学焦秉立教授--同频同时全双工技术现状和展望
北京大学焦秉立教授在2022年无线通信和物联网专场中对同频同时全双工技术现状和未来展望的介绍,涵盖了全双工技术在5G移动通信中的应用及其对提高频谱效率和传输效率的重要性。
89 2
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等