一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程)

简介: 一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程)

本文主要讲述了一体化模型进行去噪、去雨、去模糊,也就是说,一个模型就可以完成上述三个任务。实现了良好的图像复原功能!

先来看一下美女复原.jpg


具体的:


  • 在图像恢复任务中,需要在恢复图像的过程中保持空间细节和高级上下文信息之间的复杂平衡。
  • 在这篇论文中,我们提出了一种新颖的协同设计,可以在这些竞争目标之间实现最佳平衡。我们的主要提议是一个多阶段架构,逐步学习对退化输入进行恢复的函数,从而将整个恢复过程分解为更可管理的步骤。
  • 具体而言,我们的模型首先使用编码器-解码器架构学习上下文特征,然后与保留局部信息的高分辨率分支相结合。
  • 在每个阶段,我们引入一种新颖的逐像素自适应设计,利用原位监督注意力来重新加权局部特征。这种多阶段架构的一个关键组成部分是不同阶段之间的信息交流。
  • 为此,我们提出了一种双重方法,在信息不仅从早期到晚期阶段顺序交换的同时,还存在特征处理块之间的侧向连接,以避免任何信息损失。
  • 结果紧密关联的多阶段架构,在包括图像去雨、去模糊和去噪等多个任务的十个数据集上实现了强大的性能提升。


去噪结果

该论文提出的方法在图像恢复任务中引入了一个多阶段架构,可以有效平衡空间细节和上下文信息。其核心思想是逐步学习破损输入的恢复函数,并通过多个阶段的信息交流来实现更好的恢复效果。

去模糊结果

具体而言,该方法使用编码器-解码器架构学习上下文特征,并将其与保留局部信息的高分辨率分支相结合。

去雨对比结果

在每个阶段,它还引入了一种新颖的自适应设计,通过利用原位监督注意力对局部特征进行重新加权。此外,该方法还使用了早期到晚期阶段的顺序信息交流和侧向连接来避免信息损失。

代码部署

要部署和运行该论文的代码,您可以按照以下步骤进行:

1.获取代码:首先,您需要从论文作者的代码存储库或其他公开来源获取代码。

git clone my_code 联系我----->qq1309399183

2.环境设置:确保您的计算机上已安装所需的软件和库。根据代码要求,您可能需要安装Python、PyTorch、NumPy等。

conda create -n pytorch1 python=3.7
conda activate pytorch1
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
cd pytorch-gradual-warmup-lr; python setup.py install; cd ..

3.数据准备:准备用于图像恢复任务的数据集。根据您的需求,您可以选择合适的数据集,并确保按照代码的要求组织数据。
点击代码中的链接获取!


4.模型训练:使用提供的代码,您可以使用准备好的数据集对模型进行训练。根据代码的具体实现,您可能需要指定模型架构、训练参数和优化器等。

python train.py


5.模型测试:在训练完成后,您可以使用训练得到的模型对新的图像进行恢复。根据代码的实现,您可能需要提供待恢复图像的路径或其他必要的输入

python demo.py --task Task_Name --input_dir path_to_images --result_dir save_images_here
touch me:qq---->1309399183
相关文章
|
数据挖掘 计算机视觉 Python
Python数据分析中图像处理的实用技术点:图像加载与保存、图像转换与增强、特征提取与描述
Python数据分析中图像处理的实用技术点:图像加载与保存、图像转换与增强、特征提取与描述
106 1
Python数据分析中图像处理的实用技术点:图像加载与保存、图像转换与增强、特征提取与描述
|
4月前
|
编解码 物联网 API
"揭秘SD文生图的神秘面纱:从选择模型到生成图像,一键解锁你的创意图像世界,你敢来挑战吗?"
【10月更文挑战第14天】Stable Diffusion(SD)文生图功能让用户通过文字描述生成复杂图像。过程包括:选择合适的SD模型(如二次元、2.5D、写实等),编写精准的提示词(正向和反向提示词),设置参数(迭代步数、采样方法、分辨率等),并调用API生成图像。示例代码展示了如何使用Python实现这一过程。
230 4
|
3月前
|
人工智能 小程序 前端开发
【一步步开发AI运动小程序】六、人体骨骼图绘制
随着AI技术的发展,阿里体育等公司推出的AI运动APP如“乐动力”、“天天跳绳”等,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始,利用“云智AI运动识别小程序插件”,在小程序中实现类似功能,包括人体骨骼图的绘制原理及其实现代码,确保骨骼图与人体图像精准重合。下篇将继续介绍运动分析方法。
|
3月前
|
人工智能 小程序
【一步步开发AI运动小程序】五、帧图像人体识别
随着AI技术的发展,阿里体育等公司推出的AI运动APP,如“乐动力”和“天天跳绳”,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始开发一个AI运动小程序,使用“云智AI运动识别小程序插件”。文章分为四部分:初始化人体识别功能、调用人体识别功能、人体识别结果处理以及识别结果旋转矫正。下篇将继续介绍人体骨骼图绘制。
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
图像数据增强库综述:10个强大图像增强工具对比与分析
在深度学习和计算机视觉领域,数据增强是提升模型性能和泛化能力的关键技术。本文全面介绍了10个广泛使用的图像数据增强库,分析其特点和适用场景,帮助研究人员和开发者选择最适合需求的工具。这些库包括高性能的GPU加速解决方案(如Nvidia DALI)、灵活多功能的Albumentations和Imgaug,以及专注于特定框架的Kornia和Torchvision Transforms。通过详细比较各库的功能、特点和适用场景,本文为不同需求的用户提供丰富的选择,助力深度学习项目取得更好的效果。选择合适的数据增强库需考虑性能需求、任务类型、框架兼容性及易用性等因素。
747 10
|
5月前
|
机器学习/深度学习 人工智能 编解码
AI图像放大工具,图片放大无所不能
AI图像放大工具,如ESRGAN,对于提高由Stable Diffusion生成的AI图像质量至关重要。它们被广泛使用,以至于许多Stable Diffusion的图形用户界面(GUI)都内置了支持。
AI图像放大工具,图片放大无所不能
|
9月前
|
机器学习/深度学习 算法 数据挖掘
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
1053 1
|
6月前
|
数据可视化 数据管理 vr&ar
|
9月前
|
机器学习/深度学习 人工智能 达摩院
DDColor:AI图像着色工具,优秀的黑白图像上色模型,支持双解码器!
DDColor:AI图像着色工具,优秀的黑白图像上色模型,支持双解码器!
456 3
|
机器学习/深度学习 算法 计算机视觉
【OpenVI-视觉生产系列】老片图像上色,一键开源体验
随着摄影技术的演进,彩色照片在现在已经非常普及,但仍然有大量历史黑白照片遗留。图像上色可以对这些宝贵的旧时代遗产进行修复,令老照片重获新生。
1061 0
【OpenVI-视觉生产系列】老片图像上色,一键开源体验

热门文章

最新文章